
1A A

Developing WindowsStore Apps
with HTML5and JavaScript

Learn the key concepts of developing Windows Store apps
using HTML5 and JavaScript

88[i pAfKTl enterprise
I I||Vl\ I I professional expertise distilledRami Sarieddine
PUBLISHING

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Windows
Store Apps with HTML5
and JavaScript

Learn the key concepts of developing Windows
Store apps using HTML5 and JavaScript

Rami Sarieddine

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Windows Store Apps with HTML5
and JavaScript

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1160813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-710-2

www.packtpub.com

Cover Image by Michel Makhoul (makhoul.michel@live.com)

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Credits

Author
Rami Sarieddine

Reviewers
Nidal Arabi

Juri Strumpflohner

Jenil Vasani

Acquisition Editor
Kevin Colaco

Commissioning Editor
Priyanka Shah

Lead Technical Editor
Ankita Shashi

Technical Editors
Ruchita Bhansali

Jalasha D'costa

Menza Mathew

Project Coordinator
Kranti Berde

Copy Editors
Mradula Hegde

Sayanee Mukherjee

Aditya Nair

Alfida Paiva

Proofreader
Stephen Copestake

Indexer
Priya Subramani

Monica Ajmera Mehta

Graphics
Ronak Dhruv

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

About the Author

Rami Sarieddine is a Technical Evangelist for Windows Azure and Windows
8 with Microsoft Gulf. Prior to joining Microsoft, he was working as a Software
Engineer and Analyst at the American University of Beirut. He has a cumulative
7 years of experience in web development. In the span of these 7 years, he started
with an independent venture for around 2 years. After that he directly embarked
on an employment journey that was rich with experience, during which he had led
numerous projects and held several positions from Web Developer to Information
Systems Analyst and Lead Web Developer.

He was Microsoft Valued Professional awardee in 2013 and 2012 for his
contributions in the technical communities of Visual C# and ASP.NET/IIS
respectively. The MVP award is an annual award that recognizes exceptional
technology community leaders worldwide who actively share their high quality,
real-world expertise with users and Microsoft. With fewer than 5,000 awardees
worldwide, Microsoft MVPs represent a highly select group of experts.

He was selected speaker at the first Tech.Days Beirut event by Microsoft Lebanon.
Soon after, he had become a regular speaker on training sessions at their main
events including Open Door and Tech Days. He has been heavily involved with
Microsoft Lebanon's developer communities and activities, delivering hands-on
workshops on Windows 8, HTML5, Azure, and Visual Studio. His passion for
pursuing knowledge and experience, and consequently sharing it with fellow
web developers and enthusiasts drove him into starting his own technical blog.

When not working, he enjoys running and spending time with his loved ones.
And when on vacations, he enjoys traveling and visiting new places around
the world.

He can be reached at r.sarieddine@live.com and you can follow his articles
and blog posts on http://code4word.com.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Acknowledgments

Apart from the hard work put into researching and writing, the realization of this book
would not have been possible without my publisher Packt Publishing, and the efforts
of their Acquisition Editor, the team of Technical Editors, and Proof Readers in helping
to complete the book. I would like to express my appreciation and gratitude to the
Project Coordinator, Kranti Berde, and the Lead Technical Editor, Ankita Shashi, for
their contribution and guidance.

Moreover, I wish to acknowledge Microsoft Lebanon for providing me with the
opportunity of delivering training sessions on Windows 8, which contributed to my
experience on the subject matter. I would like to express my gratitude for my friend
and creative UI designer Michel Makhoul for his work on the cover image. I also wish
to express my appreciation for the people who supported me throughout this journey,
namely, my colleague Chukri Soueidi for providing me with technical advice and
encouragement and my technical mentor Firas Hamdan for his contribution to my
knowledge and professional advice.

I would also like to take this opportunity to thank my family who supported my
efforts while writing the book.

Above all, I want to express my appreciation and to thank my loved one Elissar
Mezher for believing in me, supporting and ever motivating me, and mostly for
understanding my long nights at work. Thank you.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

About the Reviewers

Nidal Arabi is a Software Engineer graduate of computer science from Lebanese
American University in Lebanon, Beirut. He has worked in several companies in
the banking sector as well as in the technology sector. He has been designated as
Microsoft ASP.NET MVP and he has also written many articles on ASP Alliance
website. He has experience in different technologies ranging from Java to .NET.

I would like to thank my wife Nivine Jundi for supporting me and
providing the time to review the book.

Juri Strumpflohner currently works as a Software Architect for an e-government
company, where his main responsibility is to coach developers to create appealing
rich client web applications with HTML5, JavaScript, and the .NET technology stack.
If you're interested in web development and best practices in software development,
you can visit his website at juristr.com, where he actively blogs about such topics.
He also participates in online communities such as StackOverflow, and on open
source projects on GitHub. When he is not in front of his computer, he is probably
practicing Yoseikan Budo where he currently owns a 2nd DAN. He holds a degree
of Master of Science in Computer Science.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Jenil Vasani has completed Engineering in Information Technology from Atharva
College of Engineering. He is a tech enthusiast, developer, and Microsoft Student
Partner, Gamer, and Blogger.

I would like to express my special thanks of gratitude to my parents,
God, and Packt Publishing who gave me the opportunity to review
this book. This book has helped me in doing a lot of research. I would
also like to thank my friends who contributed their suggestions.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here you can access, read, and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter, or the Packt Enterprise Facebook page.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: HTML5 Structure	 7

Understanding semantic elements	 8
Introducing built-in media elements	 10

Advanced media with JavaScript	 14
Introducing feature-rich form elements	 15

An enriched <input> tag	 15
Easy validation	 17

Assigning custom data attributes	 20
Summary	 21

Chapter 2: Styling with CSS3	 23
The power of CSS3 selectors	 23

Attribute selectors	 25
Combinator selectors	 27
Pseudo-class selectors	 29
Pseudo-element selectors	 29

Creating fluid layouts with Grid and Flexbox	 30
The Grid layout	 31
The Flexbox layout	 34

CSS-powered animations	 36
CSS3 animations	 37
CSS3 transforms	 38

Introducing media queries	 39
Summary	 40

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 3: JavaScript for Windows Apps	 41
Asynchronous programming with Promise objects	 41
Querying the DOM with WinJS.Utilities	 44
Understanding WinJS.xhr	 47
Introducing a new set of controls	 49
Summary	 51

Chapter 4: Developing Apps with JavaScript	 53
Introducing the tools	 53

Getting a free developer license	 55
Using Visual Studio and its templates	 57

Project item templates	 59
Getting started with Blank App	 62
Understanding the ListView control	 67
Summary	 72

Chapter 5: Binding Data to the App	 73
Getting the data	 73
Displaying the data	 77
Sorting and filtering the data	 81
Summary	 83

Chapter 6: Making the App Responsive	 85
Introducing app view states	 86
Handling a view state	 90
Understanding semantic zoom	 93
Summary	 97

Chapter 7: Making the App Live with Tiles and Notifications	 99
Introducing tiles, badges, and notifications	 99

Working with live tiles	 104
Sending notifications	 104
Summary	 108

Chapter 8: Signing Users in	 109
Introducing Live Connect	 109
Signing in users to the app	 115

Getting user info	 120
Summary	 122

Chapter 9: Adding Menus and Commands	 123
Understanding the app bar	 123

Adding functionality to the commands	 126
Summary	 129

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 10: Packaging and Publishing	 131
Introducing the Windows Store	 131

Submitting the app for certification	 135
The Store within Visual Studio	 137

Creating an App Package	 139
Summary	 144

Chapter 11: Developing Apps with XAML	 145
Creating apps with different platforms	 145
Introducing XAML apps	 146

Adding a title, theme color, and content	 155
Summary	 158

Index	 159

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Preface
Developing Windows Store Apps with HTML5 and JavaScript is a practical, hands-on
guide that covers the basic and important features of a Windows Store app along
with code examples that will show you how to develop these features, all the
while learning some of the new features in HTML5 and CSS3, which allows you
to leverage your web development skills.

What this book covers
Chapter 1, HTML5 Structure, presents an introduction to the new Semantic elements,
Media elements, Form elements, and Custom data attributes in the new HTML5 specs.

Chapter 2, Styling with CSS3, introduces the new enhancements and features introduced
by CSS3 that will be frequently needed when developing a Windows Store app with
JavaScript. This chapter covers the following topics: CSS3 Selectors, Grid and Flexbox,
Animation and Transforms, and Media Queries.

Chapter 3, JavaScript for Windows Apps, covers the Windows Library for JavaScript and
its features, as well as highlighting the namespaces and controls used for developing
the apps.

Chapter 4, Developing Apps with JavaScript, covers the tools needed and the templates
provided to get started with developing a Windows 8 app using JavaScript.

Chapter 5, Binding Data to the App, describes how to implement data binding in an app.

Chapter 6, Making the App Responsive, describes how to make the app responsive so that
it handles screen sizes and view state changes and responds to zooming in and out.

Chapter 7, Making the App Live with Tiles and Notifications, describes the concept of app
tiles and notifications, and how to create a simple notification for an app.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Preface

[2]

Chapter 8, Signing Users in, describes the Live Connect API and how to integrate
the apps with this API to enable user authentication, and sign-on, and retrieve
user profile information.

Chapter 9, Adding Menus and Commands, describes the app bar, how it works, and
where it is found on the app. Moreover, we will learn how to declare an app bar
and add controls to it.

Chapter 10, Packaging and Publishing, covers how we will get introduced to the
Store and learn how to get an app through all the stages into publishing. Also,
we will see how we can interact with the Store from within Visual Studio.

Chapter 11, Developing Apps with XAML, describes the other platforms and
programming languages that are available for developers. We will also cover
the basics of creating an app with XAML/C#.

What you need for this book
In order to implement what you will be learning in this book and start developing
Windows Store apps, you'll first need Windows 8. Additionally, you'll require the
following development tools and toolkits:

•	 Microsoft Visual Studio Express 2012 for Windows 8 is the tool to build
Windows apps. It includes the Windows 8 SDK, Blend for Visual Studio,
and project templates.

•	 Windows App Certification Kit
•	 Live SDK

Who this book is for
This book is for all developers who want to start creating apps for Windows 8.
Also, it targets developers who want to get introduced to the advancements in
standards-based web technology with HTML5 and CSS3. Additionally, the book
targets web developers who want to leverage their existing skills, code assets in
web development, and direct it to building JavaScript apps for the Windows Store.
In short, this book is for everyone who wants to learn the basics of developing a
Windows Store app.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meanings.

Code words in text are shown as follows: "The createGrouped method creates a
grouped projection over a list and takes three function parameters."

A block of code is set as follows:

// Get the group key that an item belongs to.
 function getGroupKey(dataItem) {
 return dataItem.name.toUpperCase().charAt(0);
}

// Get a title for a group
 function getGroupData(dataItem) {
 return {
 title: dataItem.name.toUpperCase().charAt(0);
 };
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You will
be able to set up options for the application UI; one of these options is Supported
rotations."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Preface

[5]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://freepdf-books.com

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

HTML5 Structure
HTML5 introduced new elements and attributes for a neater structure, smarter forms,
and richer media; this make the life of a developer much easier. HTML5 features are
classified into several groups based on their function, and the new structural elements
fall under the group semantics, which include structural elements, media elements,
attributes, form types, link relation types, semantics for internationalization, and
microdata for additional semantics. There is a big list of additions and enhancements
in HTML5, all with the aim of better presenting the content on the web. You will use
many of these when developing apps for Windows 8; the difference and, moreover,
the advantage of using it for Windows 8 development is that you do not have to
worry about the browser's compatibility, at least at the level of Windows Store apps,
since Windows 8 is an HTML5 platform that uses the most recent web standards.
Everything that you use from HTML5 and CSS3 is provided for you in your code
and is guaranteed to work in the application. And the latest version of Visual Studio
(VS 2012) includes a new HTML and CSS editor that offers full support for HTML5
and CSS3 elements and snippets.

In this chapter we will be covering the following topics:

•	 Semantic elements
•	 Media elements
•	 Form elements
•	 Custom data attributes

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

HTML5 Structure

[8]

Understanding semantic elements
HTML5 markup is more semantic than its predecessors due to the new semantic
elements for describing the structure of the page content. The list of semantic
elements includes the following:

•	 The <header> tag defines a header for the document or section. It wraps the
heading or a group of headings in a page or a section, and it can also contain
information such as logos, banners, and main navigation links. You can have
multiple <header> tags in a page.

•	 The <nav> tag represents the major navigation links. Typically it is bound to
the header.

•	 The <section> tag wraps related content that can be grouped thematically.
A <section> tag can include a <header> and <footer> tag.

•	 The <footer> tag represents content about a page or a section, for example,
related links, privacy terms, and copyright information. You can have more
than one <footer> in a page, and it is same as the <header> tag.

•	 The <article> tag represents self-contained content that can be used
independent of the document as a whole, for example, a blog entry.
<article> and <section> are much alike because both are standalone tags
and hold related content; however, if it's content can be syndicated (via an
atom or an RSS feed), then the <article> element is more appropriate.

•	 The <aside> tag represents the part of a page that is tangentially related
to the content around it, and also separate from that content, as it can be
removed without affecting the main content of the page. Typical usage
can be a sidebar.

•	 The <address> tag represents the contact information for the nearest
<article> parent element, if present, or the parent <body> element,
which in that case applies to the whole document.

Putting all these new elements together in a page would yield the following markup:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Developing for Windows 8</title>
</head>
<body>
 <header>

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 1

[9]

 <h1>The Courses</h1>

 <nav>

 Home
 About

 </nav>
 </header>
 <section>
 <article>
 <h2></h2>
 <p></p>
 <address>
 Written by Demo
 Author.

 Found at: Demo.com

 Address, Street

 UK
 </address>
 </article>
 <article>
 <h2></h2>
 <p>content</p>
 </article>
 </section>
 <aside>
 <h2></h2>

 <p></p>
 </aside>
 <footer>
 <p></p>
 <p>Copyright © 2013 Packt</p>
 </footer>
</body>
</html>

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

HTML5 Structure

[10]

Introducing built-in media elements
HTML5 introduced new media elements such as <audio> and <video>, which
can be considered as a new revolution in media types after images in the earlier
versions of HTML. These two elements make it very easy to embed media in your
HTML page/document and provide built-in media support via the HTML5 Media
element API. According to the latest specs by W3C, we can define <video> and
<audio> as follows:

•	 The <video> tag is a media element used for playing videos or movies
and audio files with captions

•	 The <audio> tag is a media element whose media data is audio, that is,
a sound or an audio stream

The <audio> and <video> elements play audio and video files respectively. The only
difference between them is that the <audio> element does not have a playback area
for visual content, contrary to the <video> element.

Prior to HTML5, we needed a plugin in order to play an audio or a video file, and
that required writing a large chunk of markup. Without HTML5, embedding media
elements was never so easy; just by putting an <audio> tag resulting in two lines of
code you can get a media player with playback controls. It is almost the same as the
 tag before. Refer to the following code:

<audio src="audio.mp3" controls>
</audio>

The previous example results in a media player that will look like the following
screenshot on Internet Explorer 9 (IE9), and might differ from one browser to another:

The previous code shows the <audio> tag in its simplest form, but the <audio> tag
has more attributes and options. Refer to the following code:

<audio controls autoplay loop>
 <p>Your browser does not support the audio element. Click here to download the file instead.
 </p>
 <source src="audio.mp3" type="audio/mp3" />
 <source src="audio.ogg" type="audio/ogg" />
</audio>

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 1

[11]

First, notice the content wrapped in a <p> tag inside the <audio> element. This content
is a fallback text and will only be used if the browser doesn't support the <audio> tag.
It provides a graceful fallback for older web browsers by informing the user about this
issue, and we can add a link to allow the download of this audio file instead. This way,
the user will not just stand there wondering what has happened. This is the simplest
way to fallback; you can use JavaScript for the same purpose too.

The preceding code snippet also shows some of the attributes for the <audio>
element. According to the W3C specification, src, controls, autoplay, loop,
preload, mediagroup, and muted are common attributes to both the media
elements, namely <audio> and <video>.

•	 The controls attribute displays the standard HTML5 controls for the audio
on the webpage, and the design of the controls varies between browser agents.

•	 The autoplay attribute plays the audio file automatically as soon as the
DOM finishes loading.

•	 The loop attribute enables repetition automatically.
•	 The mediagroup attribute links multiple media elements together

using a media controller.
•	 The muted attribute sets a default state of the audio file to mute.
•	 The preload attribute provides a hint to the user agent about what

the author thinks will lead to the best user experience. Its values can
be none, metadata, or auto.

°° none: This value hints to the browser that the web page doesn't
expect users to need the media resource.

°° metadata: This value hints to the browser to fetch the resource
metadata (dimensions, track list, duration, and so on).

°° auto: This value hints to the browser to put the user's needs first
without any risk to the server. An empty value, as in just adding
the attribute preload, maps to the auto value.

You can specify a value for the attributes as in controls="controls", which
would have the same behavior. But for simplicity and less code, you can simply
leave out the value for this attribute; the same can be applied for loop, autoplay,
and muted. You can specify the media resource by either using the src attribute
or the <source> elements.

The attribute overrides the elements.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

HTML5 Structure

[12]

The media resource (audio or video) has a MIME type and additionally a codec as in
the following code:

<source src="video.ogv" type="video/ogg; codecs="theora, vorbis" />

Setting the value for the type attribute has to be done within the <source> element.
The browser/user agent will avoid downloading the resource if it does not support its
type. You can add multiple formats of your audio/video in order to ensure playback
support across different browsers. The browser agent will go over the <source>
elements; if it cannot render the first type, it will skip to the next <source> to validate
its type, and so on. For this purpose, you will have to check the list of MIME types
supported by the <audio> and <video> elements in different browsers. The browser
not only checks for the MIME types but also for the specified codec. So, even if the
browser agent can render the resource type, the video/audio will not load if the codec
is not supported.

The following table lists the support for the 3 main video formats across the
major browsers:

Format IE9+ Chrome Firefox Opera Safari
WebM (VP8 CODEC) Yes Yes Yes Yes No
MP4 (H.264 CODEC) Yes Yes No No Yes
OGV (OGG THEORA CODEC) No Yes Yes Yes No

From the listing in the previous table, we can conclude that providing a media
resource with both WebM and MP4 formats in your HTML5 video will guarantee it
to load in the latest versions of all major browsers. This theory is reinforced in Visual
Studio 2012, which offers full Intellisense support for HTML5 tags. When you insert
the following snippet for an HTML5 <video> element, it lists 3 <source> elements
within the <video> tag:

<video controls="controls">
 <source src="file.mp4" type="video/mp4" />
 <source src="file.webm" type="video/webm" />
 <source src="file.ogv" type="video/ogg" />
</video>

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 1

[13]

The <video> element also includes a poster attribute, which is used to specify a
path for an image to be displayed in the visual content area when no video data is
available or until the user clicks on the play button. For advertising purposes, you
can use an image or a frame from the video that gives the user an idea of what the
video is like. If you do not specify a poster image and if the autoplay attribute is
not set, the browser may just display a black box filling the dimensions of the
<video> element. For example, the following code shows the difference between
code samples for two similar videos, with a poster specified for the second video:

<video id="video" controls width="400">
 <source
src="http://ie.microsoft.com/testdrive/Videos/BehindIE9AllAroundFast/
video.mp4" type="video/mp4" />
</video>
<video id="videoWithPoster" controls width="400" poster="http://msdn.
microsoft.com/br211386.5_GetStarted_484x272px.jpg">
 <source
src="http://ie.microsoft.com/testdrive/Videos/BehindIE9AllAroundFast/
video.mp4" type="video/mp4" />
</video>

The output of this markup will produce the following on the screen:

You might have noticed that we specified a width value of 400 for the two videos
in the previous example. The <video> element accepts standard HTML width and
height attributes. If there is no value set for width and height, the visual content
area stretches to the native size of video. It is recommended to set the width and
height attributes on the <video> element, thus avoiding stretching to full size,
and to encode the video at the desired viewing dimensions.

The values for the width and height attributes do
not accept units. The value indicates CSS pixels, for
example, width=400 is the same as width=400px.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

HTML5 Structure

[14]

There are JavaScript methods, properties, and DOM events that are part of the HTML5
standard that is associated with these new elements. You can read and set properties
programmatically, such as the src path and the dimensions (width and height) of the
<video> tag. You can use JavaScript methods to load the audio and video, and then
play and pause the media resource. You can also write code to handle different DOM
events raised by media elements, such as onplaying, onprogress (load progress),
onplay, and onpause. For example, you disable the default controls displayed by the
element by removing the controls attribute and by calling the functions that play and
pause the media resource from separate buttons.

The following code listing shows how we can play and pause the video using
JavaScript. We first need to detect the current state of the video file by calling
the Boolean property .paused, and if true, we then call the methods play()
or pause() accordingly:

var testVideo = document.getElementById('myVideo');
if (testVideo.paused)
 testVideo.play();
else
 testVideo.pause();

In the preceding code, we declare a variable testVideo and assign it to the myVideo
element from DOM. Assuming that the element was assigned an ID, you can use the
name, tag name, or the element's place in the DOM hierarchy to retrieve the elements.

Advanced media with JavaScript
The media elements have a rich API to access with pure JavaScript. Using JavaScript,
we can add a lot of functionality to the media elements. You can manipulate the
media resource, style it, rotate a video, play two and more media elements in sync,
display a progress bar while the media resource loads, resize a video dynamically,
and so on.

The following is the code sample that adds functionality to the timeupdate event,
which fetches the current play time of the video in seconds and displays it in a
separate div.

The following is the HTML code:

<div id="tInfo"></div>
<video id="myVideo" autoplay controls>
 <source src="w8.mp4" type="video/mp4" />
</video>

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 1

[15]

The following is the JavaScript code:

var video = document.getElementsById('myVideo');
var tInfo = document.getElementById('tInfo');
video.addEventListener('timeupdate',function(event){
tInfo.innerHTML = parseInt(video.currentTime);
}, false);

The JavaScript addEventListener method is used to provide a handler for the
timeupdate event. It takes three parameters and has the basic syntax, which is
as follows:

WinJS.Application.addEventListener(type, listener, capture);

The type parameter specifies the type of event to register, while listener is the
event handler function to associate with the event, and the third parameter capture
is a Boolean value that specifies whether the event handler is registered for the
capturing phase or not.

In addition, you can combine the capabilities of the <video> element with a canvas,
allowing you to manipulate video data in real time and add a variety of visual effects.

Introducing feature-rich form elements
Forms and <form> elements are an integral part of any application or website,
from a login form to a complete contact or registration form. In HTML4, the <form>
elements were very idle, and for any feature or advanced styling, JavaScript was a
necessity. And for any interaction, or data submission and validation, it demanded
server and client-side scripting, and its functionality was inhibited if the scripting
was disabled in the browser. HTML5 brought major improvements to the <form>
elements with new attributes and input types, and added features such as browser-
based validation and CSS styling that provide a better experience for the users filling
it, and all possible simplicity for the developers creating it.

An enriched <input> tag
New values for the type attribute are introduced to the <input> element.

HTML5 adds 13 new <input> types to the ones we were already familiar with
in HTML4, such as text and checkbox. With this addition, the <input> control
now supports types such as range, date, number, telephone, email, and URL.
And these new <input> types add intelligent behavior to the element themselves.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

HTML5 Structure

[16]

The following is the table listing of these types:

<input> types Description
tel It expects a telephone number.
search It prompts the user to enter text that they want to search for,

and adds a search icon to the input element (on browsers
that support it).

url It expects a single URL.
email It expects a single e-mail address or a list of e-mail addresses

(separated by commas).

datetime It expects a date and time with UTC time zone.
date It expects a date.
month It expects a date with a year and a month, but no time zone.
week It expects a date that consists of a week-year number and a

week number.

time It expects a time-value such as hours, minutes, seconds,
and fractional seconds.

datetime-local It expects date and time with no time zone.
number It expects numerical input.

range It expects a numerical input and displays a slider.
color It expects color value and displays a color palette to

choose from.

Along with the addition to the <input> types, new features have been added to the
already existing ones such as the File input element, which now supports multifile
selection using the multiple attribute. The browse button will display the file dialog
and then you can select files from your local disk or SkyDrive; the files can be sent to
the server as part of the form data when the form is submitted.

You can also take advantage of the progress element that represents the progress
of a task, as specified by the W3C. It can be used to show the progress of a large file
being uploaded or a media resource that is being loaded. The progress of a task is
determined by two attributes of this element:

•	 The value attribute, which indicates how much progress has been made
•	 The max attribute, which indicates the total amount of work required till

task completion

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 1

[17]

The following code uses a progress element and a button, and the script adds
the value specified in the JavaScript function parameter to its existing value.
When you load the sample and try it, you will see the progress bar visually
updating the completion progress.

The following is the HTML code:

<button id="clickBtn" onclick="updateProgress(10)">Update Progress</
button>
 Progress: <progress id="prog" max="100"></progress>

The following is the JavaScript code:

<script>
//get the progress element and add the value to it with every click
var progressBar = document.getElementById('prog');
function updateProgress(newValue){
progressBar.value = progressBar.value + newValue;
}
</script>

Easy validation
HTML5's new <input> types along with the validation attributes such as required
and pattern, and the pseudo CSS3 selectors allow browser-based validation, where
you can catch a form's input errors without a single line of code or script. This was
previously impossible and needed a custom JavaScript code or a JavaScript library.
Basically, it provides client-side form validation without JavaScript.

We'll start with the most trivial validation, filling a required field. In order to achieve
this, we need to add the required attribute to an <input> element.

The required attribute can be set on the <input> elements with type text, URL,
email, checkbox, or radio, and on select and textarea elements. It is a Boolean
attribute and can only be set on an element.

We specify that filling a value for a field is mandatory by simply adding the required
attribute. In the following code listing, you will find a couple of <input> elements
with the required attribute:

<form action="/" method="post">
 <label>Checkbox:</label>
 <input type="checkbox" required />
 <label>Radio:</label>

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

HTML5 Structure

[18]

 <select>
 …
 </select>
 <label>Text:</label>
 <input type="search" required />
 <label>Range:</label>
 <input type="range" min="5" max="10" step="5" />
 <label>URL:</label>
 <input type="url" required />
 <label>File:</label>
 <input type="file" accept=".mp3" />
 <input type="submit" name="submit" value=" Submit " />
</form>

Once the required attribute is added, and then when you click on the submit
button, all the fields in the form will be validated; an error is returned if any of
the fields are incorrect. The required fields are highlighted, and moreover, default
messages are provided to notify the user that these fields are required in the form.

You can see the following screenshot displaying the output of the preceding code:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 1

[19]

We can apply one or more styles using the CSS3 pseudo-selector required (more on
that in the next chapter). For example, the following style adds a CSS3 pseudo-class
required, which will look for all the input elements in the document that have the
required attribute, and style it with the yellow border-color.

input:required {
 border-color: Yellow;
}

If you want to apply a style that affects all the non-required elements in the form,
well that's very easy; just add the optional pseudo-class and give it a style just
as we did with the required class. In the following code, we apply a LightGray
border-color to all the input elements that don't have a required attribute.

input:optional {
 border-color: LightGray;
}

HTML5 forms not only validate for required fields, but they also check the content
of the field values and validate it either automatically, as in the URL and email
input types, or by using the pattern attribute. The pattern attribute uses a regular
expression to define the valid format that the element value must match, for
example, a telephone number or social security number.

The following example shows the syntax for a password field, which is both
required and must have a valid input with a minimum length of eight characters.
And here, the default validation message is replaced by the text provided in the
title attribute:

<input type="password" required pattern="[^\s]{8}[^\s]*"
title="Passwords must be at least 8 characters long."/>

There are more attributes that add to the validation technique, such as placeholder,
which provides the users with a hint message displayed in light text until the user
starts typing inside the element; the hint could be about the value they should enter
in the field. For example, you can add a demo e-mail address in the email field
such as:

<input type="email" placeholder="email@example.com" />

You can check for the maximum number of characters allowed in a text or a
textarea input using the maxlength attribute. Also, we have the min, max, and
step attributes used with the range element to validate the values entered for that
element. The min and max attributes check for the minimum and maximum values
that can be entered, while the step attribute checks for the allowed values.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

HTML5 Structure

[20]

You can also specify acceptable file MIME types with the accept attribute. As you
may have noticed in the preceding code listing, the accept attribute was added to
the <input type="file" /> element, which is the only element to be used with it.
Once you add this to the file control, and then when you try to browse for a file using
Windows 8 File Explorer, only the types that are in the accept list will be displayed.

HTML5 form validation is the default behavior; no code is needed to activate it,
but you can turn it off by adding the formnovalidate attribute to the submit
button or any <input> element. This attribute allows a form to be submitted
without being validated.

Assigning custom data attributes
With HTML5, we now have the ability to assign custom data attributes to any
HTML5 element. The W3C defines it as:

Attribute that is intended to store custom data private to the page or application,
for which there are no more appropriate attributes or elements.

These new custom data attributes consist of two parts:

•	 Attribute name: It must start with the prefix data- and should be followed
with at least one character and should not contain uppercase characters

•	 Attribute value: It must be a string value

Let's add a custom attribute to a <div> tag as shown in the following code:

<div id="bookList" data-category="TechnicalBooks">
Developing for windows 8
</div>

You can see the custom attribute name data-category and the attribute value
TechnicalBooks assigned to the <div> element. This data can be retrieved and
updated by your JavaScript code using the native getAttribute and setAttribute
methods, because the custom data attributes are considered to be part of the page on
which they are used. The following is the code sample that shows how to manipulate
the custom attributes using native JavaScript:

function getSetCategory() {
 var bookList = document.getElementById("bookList");
//get the value of the attribute
 var bookCategory = bookList.getAttribute('data-category');
//set the value for the attribute

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 1

[21]

 bookList.setAttribute('data-category', 'HealthBooks');
//remove the attribute
 bookList.removeAttribute('data-category');
}

The HTML5 specification clearly states that the data attributes should not be
used to replace an existing attribute or an element that may be more semantically
appropriate. For example, it would be inappropriate to add a data-time attribute
to specify a time value in a span element as the following code shows:

8am

The most appropriate and more semantic element to use would be a time element,
as the following code shows:

<time datetime="08:00">8am</time>

When developing Windows 8 apps, we can use the Windows library for JavaScript
(WinJS) to achieve more advanced binding of data to HTML elements. The Win8
JavaScript library utilizes the HTML data-* attributes to provide an easy way to
programmatically implement data binding.

Summary
In HTML5, there are new semantically rich elements that can convey the purpose
of their use. There are media elements that allow you to easily add audio and video
to your application, and new input types and attributes that you can use to create
intelligent and interactive forms and bind them to data on-the-fly, all with less
markup and code than ever before.

In the next chapter, we will have a look at the new and rich CSS3 features available
for us when developing for Windows 8, and how we can use them to style and apply
layouts to our HTML.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Styling with CSS3
HTML defines the document/page structure and lists the elements it contains. But
the job of defining the layout, the positioning, and the styling of those elements is the
sole responsibility of CSS. A cascading style sheet (CSS), as the name suggests, is
basically a sheet that contains a list of style rules. Each CSS style rule links a selector,
which defines what is going to be styled, to a declaration block, which includes a
single or a set of styles, which in turn define the effect(s) you want applied to that
associated selector. The syntax of a basic style rule would look like this

selector { property: value; property: value; }

Throughout this chapter, we will go over the following topics: CSS3 selectors, Grid
and Flexbox, Animation and Transforms, and Media Queries. These topics cover
some of the CSS3 features that are frequently used when developing a Windows
Store app with JavaScript.

The power of CSS3 selectors
CSS selectors are very powerful and come in handy when formatting an HTML
document. Using selectors is sometimes tricky, as selecting exactly what you want,
and then ensuring that the style rules applied are affecting just the elements that you
intended, is a tedious mission. But when done properly with the right selectors, the
outcome is very rewarding. Mastering the use of selectors will result in a less complex
CSS, minimizing the probability of having redundant styles and over-defining the
HTML with classes and IDs, thus ensuring a better performance. The selector can
simply be an HTML element, a class, an element ID, or it can even be the element's
position in the DOM.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Styling with CSS3

[24]

The following is a list of CSS selectors; we will start with the basics and get to the new
selectors introduced in CSS3:

•	 The asterisk (*) symbol: This is the catch-all selector, called the universal
type selector, and is used to target every element in the document. It is often
used with CSS Reset to reset all the default styles.
* { margin: 0; }

•	 The HTML element: It is called the type selector and is used to select all the
elements in the document according to their type. For example, the following
selector will target every <p> element in the DOM, change the color of the
text to red, and underline it.
p { color: red; text-decoration: underline; }

Using the <body> element as a selector will target the
document's body, thereby selecting every element as
if you are using the asterisk (*).

•	 The ID selector: It is specified by the value in the id attribute of the element
prefixed with the hash (#) symbol. The ID should be the element's name and,
more importantly, it must be unique. The name should be a clear reference
to the element. For instance, it would be quite clear to have an id value of
mainMenu for a nav element. For example:
<nav id="mainMenu"></nav>

Moreover, being unique means that logically there should be no other
element with an id value of mainMenu on the page. Since the id should
always be unique, the selector will target only one element in the HTML
document. For example, if you have a <div> element with an id value
of logo as follows:
<div id="logo"></div>

Then the corresponding selector will be:
#logo { float: left; width: 200px; }

•	 The class selector: It is specified by the name of a class prefixed with
a period (.) and targets all the elements with the matching class name.
The basic syntax for this selector is as follows:

.highlighted { font-weight: bold; background-color:
 yellow; }

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 2

[25]

Any element with this class name will have bold text in a yellow background
color. Classes should be applied when you want to style more than one element,
specifically, a set of elements that have something in common. Bear in mind that
contrary to the id property, the class name can never be used to uniquely identify
an element. Moreover, the class property may have more than a single value;
similarly, the same class may apply to more than one element. Although the use
of class selectors may seem general, you can use it in a more specific manner by
prefixing it with a type selector. For example, the following code snippet will
target only the <div> elements that have the class highlighted:

div.highlighted { font-weight: bold; background-color: yellow; }

Also, you can chain class selectors to target all the elements that have all of the
specified classes.

Attribute selectors
The attribute selector is used to select elements based on their attributes. It checks
whether an attribute is present; if yes, it checks the value of the attribute. The attribute
should be enclosed within square braces. If the square braces contain only the name
of the attribute, it will check if the attribute exists on the element. That's why it's also
called the existence selector. In the following code snippet, the selector will target only
the anchor elements having the title attribute:

a[title] { text-decoration: none; color: #000; }

The preceding syntax is helpful when checking for attributes that do not hold a
value. If you remember, in the previous chapter we mentioned that some attributes
do not need a value, such as the required attribute with the <input> elements, or
the loop attribute with the audio and video elements. The following selector will
look for all the audio elements that have the loop attribute and hide it:

audio[loop] { display: none; }

To target the element(s) that exactly matches the specified attribute value, we will
use the equality attribute marked with an equal symbol (=) and the value wrapped
within quotes. So, if we want to target all input elements that have the value email
in their type attribute, the syntax will look like the following:

input[type="email"] { text-decoration: none; color: #000; }

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Styling with CSS3

[26]

Also, under the attribute selector category, we have the prefix or the "starts with"
attribute selector, which is used to check if an attribute has a value that starts with
some value. The following syntax will match all the images that have an id value
starting with home. For example, if you want to target all the images in your home
page, you can add home to the id, thus having homeLogo, homeBanner, and so on,
and apply a margin of 10 px to it:

img[id^='home'] { margin:10px; }

Similarly, we have the suffix selector or the "ends with" attribute selector, which
will select all the elements whose attribute ends with the value you specify. The
suffix selector is marked with the dollar ($) symbol before the equal (=) sign, and
the syntax will look as follows:

a[href$=".jpg"] { color: red; }

This will target all the anchor elements whose href attribute holds a value that ends
with .jpg.

Another attribute selector is the substring selector, also known as the "contains"
selector. As the name suggests, it matches the attribute value containing the value
specified in the selector. It is marked with the asterisk (*) symbol before the equal
(=) sign, and the syntax will look as follows:

ul[id*="Nav"] { float: left; list-style-type: none; }

The preceding syntax will match all the elements that have an ID containing
the string Nav. For example, you have multiple elements used for navigational
purposes and marked with IDs such as secondaryNav, sidebarNav, and so on.

Also, we have the hyphen selector, marked with |=, which is used to match all the
attribute values that are exactly equal and is immediately followed by a hyphen.
You might use this selector rarely but a typical use for it would be with values that
include a hyphen, for example, the lang attribute. The following listing will target
all the elements with a value that exactly matches "en", additionally followed by a
hyphen, and will return en, en-us, en-uk, and so on:

ul[lang|="en"] { display: none; }

The last attribute selector would be the whitespace selector, which targets the
specified attribute value that exactly matches in a space-delimited list of values.
In the following code snippet, we have a <p> element with a custom data- attribute,
containing three space-separated values, named new events local, and the selector
will match this element since its data-post-type value matches exactly the value
specified as events.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 2

[27]

The following is the HTML code:

<p data-post-type="new events local"></p>

And the CSS code is as follows:

p[data-post-type~="events"] { float: left; color: red }

Note that, with HTML5, any attribute starting with
data- is valid, unlike its predecessor that considers
only the recognized attributes as valid.

Combinator selectors
A CSS selector can contain multiple selectors, that is, a combination of simple
selectors. A combinator selector contains more than one simple selector joined by
a combinator. The combinator is a symbol that represents the relationship between
the selectors. We already had three different combinators in CSS2, and CSS3 added
one extra. Listed as follows are the four selectors, the combinators used, and what
each selector matches:

Selector Combinator Target

Descendant Space Character Matches the elements that are descendants
of the specified element.

Direct Descendant
(Child Selector)

> Matches the elements that are a direct
descendant of the specified element.

Adjacent Sibling + Matches the elements that are an adjacent
sibling (immediately following) to the
specified element.

General Sibling ~ Matches the elements that are an adjacent
sibling to the specified element.

The preceding selectors are described as follows:

•	 The Descendant selector: It is marked by a space character as a combinator
and it will select all elements that are descendants of a specified element.
It is as if we are applying an additional filter on the first simple selector.
The first selector represents the parent element, and the second is the child
(descendant) element you are trying to match. For example, the following
code snippet will match all the anchor elements that have the element
as their parent:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Styling with CSS3

[28]

The HTML code is as follows:

 Item 1
 Item 2
 Item 3

The CSS selector is as follows:
li a { text-decoration: none; color: #000; }

•	 The Direct Descendant selector: It is marked by the greater-than (>) sign as
a combinator and has the basic form E>F, which matches every F element that
is a direct descendant (child) of the E element. In the following code snippet,
only the <p> elements that are immediate children of the <div> element are
going to be colored blue while the rest are not.
The HTML code is as follows:
<div>
 <p>some content inside a div</p>
</div>
<p> standalone content …</p>
<div>
 <p> contentinside a div </p>
</div>
<header>
 <p> content inside a header </p>
</header>

The CSS code is as follows:
div > p { color: Blue; }

•	 The Adjacent Sibling selector: It is marked by a plus (+) sign as a combinator,
and matches all the sibling elements that are immediately following the parent
element. So, there can be no elements in between the sibling elements. If it is a
bit complex, the following example will explain it. The selector will apply red
color only to one <p> element.
The HTML code is as follows:
<h1>Heading</h1>
<p>This p element is a sibling and adjacent to the h1
</p>
<p>This p element is a sibling but not adjacent to the h1
</p>

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 2

[29]

The CSS code is as follows:
h1 + p { color: Red; }

•	 The General Sibling selector: It is marked by the tilde (~) sign as
a combinator, and is a new addition in CSS3. It is used to select all the
elements that are siblings of a given element. So, if we apply the selector
to the HTML in the preceding example, both the <p> elements will match
and will be colored red, as they are both siblings of h1.
h1 ~ p { color: Red; }

Pseudo-class selectors
A pseudo-class is similar to a class but, since it is in-built, you do not have to
explicitly add it in the HTML code. Also, it differs in syntax; a class selector is
preceded by a period (.), whereas a pseudo-class is preceded by a colon (:).
In its basic form, a pseudo-class selector will take the following form:

selector:pseudo-class { property: value }

You can specify a pseudo-class without a selector, and it will invoke the default
type selector. So, if we specify :hover alone, it will match all the elements and apply
the style rule to anything in the document that can be hovered on. Else, you can be
more detailed and apply the pseudo-class selector to a specific HTML element. For
example, the following code snippet will apply a pink color on all the <p> elements
when hovered over:

p:hover { color: pink; }

Pseudo-classes existed in CSS prior to CSS3 and you are most probably familiar
with the famous :hover, :visited, and :active pseudo-classes that represent
the different states of the anchor element. CSS3 introduced many more powerful
pseudo-classes such as :required, :valid, :nth-child(n), :first-child, :last-
child, :only-child, :first-of-type, :last-of-type, and several others.

Pseudo-element selectors
Pseudo-elements represent parts of elements, such as the first line of a paragraph,
or the part that appears after an element. Similar to a pseudo-class that acts as a
class, a pseudo-element behaves as an element but is in-built and does not need to
be defined in the HTML code. Pseudo-elements are distinguished by a double colon
(::), which was introduced in CSS3. Note that all the pseudo-elements that were
introduced before CSS3 used a single colon (:), similar to the pseudo-class syntax.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Styling with CSS3

[30]

The following code snippet will select all the generated content defined by the
content style property that appears after the <p> element:

The HTML code is as follows:

<p>Paragraph content goes here</p>

The CSS code is as follows:

p::after {
 content: " 'I come after a paragraph' ";
 color: blue; background-color: yellow;
}

The output will be:

Paragraph content goes here 'I come after a paragraph'

The following table lists the pseudo-elements:

::first-letter Matches the first letter in an element.
::first-line Selects the first line in an element.
::before Selects the content generated before an element.
::after Selects the content generated after an element.
::selection Selects any content that the user might have highlighted, including

text within an editable text field, such as input type text, or any
element with the contenteditable attribute declared.

Although you can have the same behavior programmatically by
adding classes to your HTML code using JavaScript, it is easier
to add pseudo-classes and pseudo-elements to your selectors;
moreover, it gives you cleaner code.

Creating fluid layouts with Grid and
Flexbox
When it comes to implementing the design principles set by Microsoft to build
attractive, intuitive, and interactive Windows 8 apps, layout is very important.
It is common to define a page layout using HTML structural elements such as
<div> and <table>, and the positioning style rules.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 2

[31]

But now, there is a more flexible way to do it with the CSS3 advanced layout
features, namely Grid layout and Flexbox (Flexible box) layout. These layout
systems allow you to easily implement an adaptive and fluid layout.

The Grid layout
It offers a very simple way to create fluid and adaptable layouts for a Windows 8
app. It is ideal for implementing a full screen UI since the grid can automatically
expand to fill in all the space that is available. The Grid layout allows you to align
and position its child elements as columns and rows, entirely using CSS, and is
independent of their order in the HTML code. It enables more fluidity in layouts
than what would be possible with the approach that uses floats or scripts.

The following example demonstrates how we traditionally used floats to
position elements:

The HTML code is as follows:

<div class="container">
 <div class="leftDiv"></div>
 <div class="rightDiv"></div>
</div>

The CSS code is as follows:

.container { width: 200px; height:50px; border: 1px solid black; }

.leftDiv { float:left; width: 100px; height:50px;
 background-color:blue}
.rightDiv { float:right; width: 50px; height:50px;
 background-color:red}

The preceding code will result in the following multicolor box. The container has a
black border surrounding the two divs inside, the blue div to the left and the red one
to the right, and the white space in between is the remaining unoccupied space:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Styling with CSS3

[32]

The Grid layout is specified by setting the display style rule property of an element
to -ms-grid, or you can use the -ms-inline-grid property for an inline-level grid
element. You may have noticed the vendor prefix -ms(Microsoft-specific), which is
because the status of this CSS feature is still a Working Draft; adding this vendor
prefix allows it to work with both Internet Explorer 10 and Windows Store apps
using JavaScript in Windows 8. The following is an example:

.divGrid {
 display: -ms-grid;
 -ms-grid-columns: 120px 1fr;
 -ms-grid-rows: 120px 1fr;
}
.column1row1 {
 -ms-grid-column: 1;
 -ms-grid-row: 1;
}
.column2row1 {
 -ms-grid-column: 2;
 -ms-grid-row: 1;
}

The display: -ms-grid; property creates a grid; afterwards, we define the columns
and rows and specify their sizes using the following properties: -ms-grid-column and
-ms-grid-rows. The -ms-grid-columns property specifies the width of each column,
and -ms-grid-rows specifies the height of each row, in that grid. The width and
height values in these two properties respectively are separated by a space character.
In the preceding example, the -ms-grid-columns: 120px 1fr; property creates two
columns; the first one has a width of 120 px and the second one has a width value of
1 fr, that is, one fractional unit, which means that the width of the second column will
automatically fill in all of the remaining available space. The same concept applies
for rows. The remaining two classes in the preceding code snippet will position the
elements in these classes into columns and rows of the grid using the -ms-grid-
column and -ms-grid-row properties.

The fraction units (fr) designate how the available space should
be divided among the columns or rows according to their
fractional values. For example, if we have a four-columns layout
such as the following: -ms-grid-columns: 100px 100px
1fr 2fr;, column 3 takes one fraction and column 4 takes two
fractions of the total remaining space. Hence, the total remaining
space is now 3 fr; column 3 is set to 1 fr divided by the total (3),
so both one-third of the remaining space and column 4 having 2
fr will be assigned two-thirds of the remaining space.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 2

[33]

In the preceding example, we used px and fr units to specify the size of the columns
and rows. Additionally, we can do so using standard length units (such as px or em),
or the percentage of the element's width or height. Also, we can use the following
keywords:

•	 auto: This keyword makes the size of the column or row stretch to fit
the content inside

•	 min-content: This keyword sets the size of the column or row to the
minimum size of any child element

•	 max-content: This keyword sets the size of the column or row to the
maximum size of any child element

•	 minmax(a,b): This keyword sets the size of the column or row to a
value between a and b as much as the available space allows

The following table lists the properties associated with the Grid layout:

-ms-grid-column Specifies in which column of the grid the element will reside.
The numbering system is of the 1-based index type.

-ms-grid-columns Specifies a width value for each of the grid columns.
-ms-grid-column-span Specifies the number of columns that the element will occupy

in the grid.
-ms-grid-column-align Specifies a value for the horizontal alignment of the element

inside the column.
-ms-grid-row Specifies in which row of the grid the element will reside.

The numbering system is of the 1-based index type.
-ms-grid-rows Specifies a height value for each of the grid rows.
-ms-grid-row-span Specifies the number of rows that the element will occupy

in the grid.
-ms-grid-row-align Specifies a value for the vertical alignment of the element

inside the row.

Moreover, the Grid layout exposes a rich set of properties that allows you to easily
cater to the changes in the view states and orientation of the app. We will discuss
that later on when we get to the design of the app.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Styling with CSS3

[34]

The Flexbox layout
The second layout model we have is the Flexbox mode, another recent addition in
CSS3. Similar to the Grid layout, the Flexbox layout is enabled using the display
property and also requires a Microsoft-specific vendor prefix as it is still a World
Wide Web Consortium (W3C) Working Draft. The Flexbox layout is used to make
the relative position and the size of elements stay constant, even if the window sizes
of the screen and browser change. Compared to floats, Flexbox provides a better and
easier control on the position and size of elements. The advantage you have with
Flexbox layout is that it enables relative positioning and dimensions of the elements
inside it, since it considers the available space. This allows you to create a fluid
layout that maintains the position and size of the elements relative to each other;
hence, it enables the elements inside a Flexbox container to resize and reposition
themselves when the dimensions of the browser or app window change. A Flexbox
layout would be ideal for building apps that present any digital print media, such
as a newspaper or a magazine.

As with the Grid layout, it is quite easy to create a container with a Flexbox layout
by setting the display property to -ms-flexbox. After creating a Flexbox container,
we can start manipulating the elements inside it, using the following properties:

•	 -ms-flex-direction: It specifies the orientation of the child elements
using the following keyword values: row (initial value), column, row-
reverse, and column-reverse. We will go over each one of the values,
and show the effect it applies, in the following example. And what better
way to explain it than actual code? So,o suppose we have the following
HTML and CSS code snippets:
<div class="flexit">
 <div>1</div>
 <div>2</div>
 <div>3</div>
</div>

.flexit {
 width:160px;
 height:100px;
 border:2px solid brown;
 display:-ms-flexbox;
 -ms-flex-direction: row;
}
.flexit div {
 background-color:red;
 width:50px;

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 2

[35]

 height:25px;
 text-align:center;
 color:white;
}
.flexit div:first-child {
 background-color:green;
 height:30px;
}
.flexit div:last-child {
 background-color:blue;
 height:30px;
}

The preceding syntax creates a Flexbox container with the flexit class that
wraps in a Flexbox layout the child <div> elements marked with text 1, 2,
and 3 for tracking. We apply some styles and background colors to mark
the child elements.
So the following values in the -ms-flex-direction property will give us
the results in the following table. Notice how the order and the positioning
of the elements change without adding anything to the markup:

Property The Flexbox container The order and the
positioning of the
elements

row The child elements are
positioned from left to
right, in the same order
of appearance in the
HTML markup.

row-reverse The child elements are
positioned from right to
left, in the reverse order
of appearance in the
HTML markup.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Styling with CSS3

[36]

column The child elements are
positioned from top to
bottom, in the same or-
der of appearance in the
HTML markup from left
to right.

column-
reverse

The child elements are
positioned from bottom
to top, in the same order
of appearance in the
HTML markup.

•	 -ms-flex-align: This property specifies the alignment of the child elements
in a Flexbox container. It takes the following keyword values: start, end,
center, stretch, and baseline. The alignment is always perpendicular
to the layout axis defined in the -ms-flex-direction property; so, if the
orientation is horizontal, it will set the alignment to vertical and vice versa.
For example, if the orientation is row (horizontal), the value start will set
the alignment to top (vertical).

•	 -ms-flex-pack: This property specifies how the available space is divided
between the child elements of the Flexbox container, parallel to the axis
defined by the -ms-flex-direction property, unlike the alignment
property described earlier. It takes the following keyword values: start,
end, center, and justify.

•	 -ms-flex-wrap: This property enables the child elements to overflow and
wrap to the next line or columns, and specifies the direction of that flow.
It takes the following keyword values: none, wrap, and wrap-reverse.

CSS-powered animations
CSS transforms allow you to manipulate HTML elements in a way that previously
was only possible with scripts. It enables rotation, translation, scaling, and skewing of
elements, and enables the transformation of elements in 2D and 3D. CSS animations
enable you to smoothly change the style properties over a period of time, allowing you
to design complex animations with better rendering performance when compared to
JavaScript-powered animations. Working with the two combined, you can do magic
on your app.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 2

[37]

CSS3 animations
CSS3 revolutionized animation in web development. Earlier, creating animations
required animated images, plugins such as Flash, or some heavy scripting. Although
jQuery and other supporting libraries made it a bit easier for developers to create
animations with JavaScript, still it cannot compete with the performance capability
that the CSS animations offer. Basically, an animation defines an effect that allows an
element to change one or many styles, such as color, size, position, opacity, and others,
within a time frame. Also, with CSS3 animations, you can allow multiple intermediate
changes in styles during the animation itself, other than the ones specified at the
beginning and end of the animation.

In order to create an animation, you will need the @keyframe CSS rule, which is
used to specify the styles that will be changed during the animation. The following
is the code snippet that creates a @keyframe rule named demo and changes the
background color from red to yellow, and halfway through, at 50percent, it
changes the opacity to zero:

@keyframes demo {
 from { background: red; }
 50% { opacity: 0; }
 to { background: yellow; }
}

Afterwards, we bind the animation that is defined in the @keyframe rule to the
element (or the selector) we want the effect applied to. Left alone without being
attached to any element, the animation will not be applied anywhere. We will need
to specify at least two animation properties when binding the animation to a selector:

•	 Name
•	 Duration

For example:

#logo { animation: demo 4s }

The preceding example binds the animation named demo that we created using the
@keyframe rule, with a duration of 4 seconds, to the element with ID #logo.

Animations are triggered automatically as soon as they are defined in the DOM.
You can specify a certain delay time to avoid that, or you can trigger the animation
by code. The animation has six major properties as shown below:

div {
 animation-name: demo;

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Styling with CSS3

[38]

 animation-duration: 3s;
 animation-timing-function: ease-in;
 animation-delay: 3s;
 animation-iteration-count: 2;
 animation-direction: normal;
}

Or we can use the animation shorthand property by which we can combine all of
these properties into a single line:

div { animation: demo 3s ease-in 3s 2 normal; }

Developers are still a bit hesitant to use CSS3 animations, or any other HTML5
feature for that matter, due to browser support. In order to address this problem
of browser compatibility, some style rules had to be defined with vendor-prefixes.
For example, an animation definition would be duplicated to support other
browsers, each with its own vendor prefixes as follows:

-webkit-animation: 5s linear 2s infinite alternate;
-moz-animation: 5s linear 2s infinite alternate;
-o-animation: 5s linear 2s infinite alternate;
animation: 5s linear 2s infinite alternate;

But when developing for Windows 8, you can reduce it to one, which is the standard.
Worrying about multi-browser support is the least of your concerns as Windows 8
supports all the standards that work for Internet Explorer 10.

CSS3 transforms
Another advantage of CSS3 is the concept of 2D and 3D transforms, which enables
you to manipulate the elements in your app in a way that was not possible using
CSS. It enables you to create rotation, scaling, skewing, and translation of HTML
elements in 2D and, newly, in 3D space without the need for a plugin or scripts,
defined by the W3C under the CSS transforms specification.

Transforms are created using the transform property, which holds a list of
transform functions to be applied to the specified element. The property value can
be set to one or more (space-delimited) transform functions, which will be applied
in the order they are listed. Following is a sample code of the transform property
that applies the rotate function:

div { transform: rotate(90deg) translateX(100px); }

The result of the preceding transform property is that the element is rotated
90 degrees and then translated (moved) 100 px horizontally to the right.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 2

[39]

The list of functions available for the transform property includes matrix(),
matrix3d(), perspective(), rotate(), rotate3d(), rotateX(), rotateY(),
rotateZ(), scale(), scale3d(), scaleX(), scaleY(), scaleZ(), skew(), skewX(),
skewY(), translate(), translate3d(), translateX(), translateY(), and
translateZ(). These functions are provided with the CSS3 IntelliSense features
in Visual Studio; thus, when writing a transform property, you will be prompted
to choose one of those functions.

Visual Studio 2012 has enhanced support for CSS with
features such as Regions, IntelliSense, vendor prefixes, and
built-in snippets, thereby making it very easy and convenient
to develop apps for Windows 8 using HTML5 and CSS.

Introducing media queries
Your Windows 8 app should have a fluid and responsive UI, as the same app will
be downloaded and opened either on a tablet, a PC with a large monitor, or a phone.
Your app should adapt to the different view states (full screen portrait or landscape,
filled or snapped) and display accordingly. It should look good and function well
when the users flip the screen between portrait and landscape, when they zoom,
when they snap the app, and so on. Too much stuff to look out for, you might say?
Worry not, because if you are developing using a JavaScript app, the answer to all
your concerns is CSS Media Queries!

By using CSS media queries, you can manage the changes to the layout by easily
defining different styles to apply to the HTML elements in your app, depending
on the view state and size of the current media. You can use a separate media query
to tailor for each view state, or you can combine media queries to apply the same
set of styles to multiple view states. The basic syntax of a media query is as follows:

@media MediaType TargetMediaProperty{MediaRule}

It is a logical expression that is either true or false, and consists of the following:

•	 @media: It is a keyword that indicates a media query
•	 MediaType: It is used to specify the type of media we are targeting; it can

have one of the following values: screen for computer screens, print for
documents viewed in print mode, and all for all devices

•	 TargetMediaProperty: It is used to create more specific queries by adding
conditions such as orientation and size

•	 MediaRule: It is used to specify one or more style rules that will be applied
in case the media query is evaluated to true

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Styling with CSS3

[40]

A simple example would look like the following:

@media screen and (max-width: 1024px) {
 body {
 background-color: orange;
 }
}

The preceding media query will check whether the medium is a screen and the width
of window does not exceed 400 pixels. If true, it will apply the orange background
color to the body element.

The following code snippet checks for the orientation:

@media all and (orientation: portrait) {
...
}

We can also include the Microsoft-specific vendor property -ms-view-state to
check for different view states that the app can handle. For example:

@media all and (-ms-view-state: snapped) {
...
}

Summary
In this chapter, we tried to cover and learn as much as possible from the new and rich
CSS3 features and describe which ones are available for us when developing apps for
Windows 8. We looked in detail at the CSS selectors and learned to use them to filter
the DOM elements according to our need. We learned about new layout techniques
using the Grid and Flexbox display properties.

We saw what magic we can do with the animation and transform properties, and
got to have a look at the power of media queries to help us build a responsive layout.
In short, CSS3 is a wonderland and you will need to get familiar with its features in
order to harness all its powers.

In the next chapter, we will go over the main features provided by the Windows
Library for JavaScript, which is the backbone of the Windows Store app that is
built using JavaScript.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

JavaScript for Windows Apps
In this chapter, we will get introduced to some of the features provided by the
Windows Library for JavaScript (the WinJS library) that has been introduced by
Microsoft to provide access to Windows Runtime for the Windows Store apps using
JavaScript. Windows Library for JavaScript is a library of CSS and JavaScript files. It
contains a set of powerful and feature-rich JavaScript objects, functions, and methods
organized into namespaces, with the aim of making it easier for developers to create
Windows Store apps using JavaScript.

We will also learn about asynchronous programming with WinJS and see how
we can query the document for elements and manipulate these elements using
the functions provided by the WinJS.Utilities namespace. Next we will learn
about the xhr function and its use and finally get introduced to the set of UI
controls provided by the Windows Library for JavaScript.

Asynchronous programming with
Promise objects
When building a Windows 8 app, the stress is on having a responsive UI, which is
one of the main characteristics of a Windows 8 Store app. In Chapter 2, Styling with
CSS3, we got to see how we can achieve that at the styling level. The responsive UI
also includes having a responsive functionality whereby the code running behind the
scenes not only blocks the app's UI all of a sudden but also makes it unresponsive to
any user input while some logic or functionality executes.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

JavaScript for Windows Apps

[42]

JavaScript, as a programming language, is single-threaded, which means that a
synchronous execution of a long-running process will block all other executions
until that process has completed. Thus, you should avoid synchronous execution
whenever you can. The solution to this predicament is asynchronous processing,
which is essential to create responsive, high-performance apps. One way of
achieving asynchronous processing is by using the callback function mechanism.
A callback function is used as a hook point for continuing the processing after a
previous asynchronous operation has terminated. A typical example is a call to
a server-side backend.

//code sample using jQuery
function longRunningComputation(callbackFunc){
 setTimeout(function(){
 //computation
 //once finished, invoke the callback with the result
 callbackFunc(computationResult);
 }, 1000);
}

This function is then invoked as follows:

longRunningComputation(function(compResult) {
 //do something meaningful with the result

});

The callback functions are the typical solution to asynchronous calls but they
have a drawback: they create deep chains, especially when you place multiple
asynchronous operations in a chain where subsequent functions rely on the result
of the previous computation. Windows Library for JavaScript along with Windows
Runtime provides a more elegant solution using a mechanism called Promise, which
simplifies asynchronous programming. Promise, as the name suggests, indicates that
something will happen in the future and the Promise is said to be fulfilled after that
something has completed.

In the following code sample, we create a function called sumAsync that will return
a WinJS.Promise object and will execute asynchronously when we call it in the
clickMe() function:

function clickMe() {
 sumAsync().then(
 function complete(result) {

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 3

[43]

 document.getElementById("result").textContent = "The
promise has completed, with the result: " + result;
 },
 function error(result) {
 document.getElementById("result").innerHTML = "An Error
has occurred </br>" + result;
 },
 function progress(result) {
 document.getElementById("result").innerHTML += "The
promise is in progress, hold on please." + result;
 })
}
function sumAsync() {
 return new WinJS.Promise(function (comp, err, prog) {
 setTimeout(function () {
 try {
 var sum = 3 + 4;
 var i;
 for (i = 1; i < 100; i++) {
 prog(i);
 }
 comp(sum);
 } catch (e) {
 err(e);
 }
 }, 1000);
 });
}

We can deduce from the preceding code sample that, Promise is basically an object.
This object implements a method named then, which in turn takes the following
three functions as parameters:

•	 A function that will be called when the Promise object completes and has
been fulfilled successfully

•	 A function that will be called when an error arises while the Promise object
is being fulfilled, known as future

•	 A function that will be called while Promise is being fulfilled, to indicate
the progress information, known as deferred

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

JavaScript for Windows Apps

[44]

In Visual Studio, when you add a then method to a function, you will be prompted
in the IntelliSense pop-up window to enter these parameters, as shown in the
following screenshot:

You can use the then method with any function that returns Promise; since it returns
Promise, you can chain multiple then functions. For example:

sumAsync()
 .then(function () { return XAsync(); })
 .then(function () { return YAsync(); })
 .done(function () { endProcessing();})

In the previous example, we appended multiple then methods to the functions and
completed the processing with the done method.

The done method takes the same parameter as then. However,
the difference between the two is that done returns undefined
instead of Promise, so you cannot chain it. In addition, the done
method throws an exception if an error function is not provided
to handle any errors that occur during processing, while the then
function does not throw an exception and instead returns the
Promise object in the error state.

All the Windows Runtime APIs that are exposed to Windows Store apps are wrapped
in Promise objects, exposing methods and functions that return a Promise object,
allowing you to easily implement asynchronous processes in your app.

Querying the DOM with WinJS.Utilities
The UI of the app is described in HTML and the corresponding styles. When the
app is launched, you should expect different user interactions with the UI. The user
will touch some sections of your app; he/she will scroll, zoom in and out, or add
or remove items. Moreover, the app might interact with the user through dialogs
or conversations and through posting notifications on the screen. Responding to
such interactions is handled by code and in our case, specifically by JavaScript code.
That's where WinJS.Utilities comes in handy, by providing helper functions to do
that; for example, functions to add/remove CSS classes or to insert HTML elements.
But before anything interacts with the user, you have to select the function using
JavaScript, which is called querying the DOM.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 3

[45]

In Chapter 2, Styling with CSS3, we saw how to select parts of the DOM using CSS
selectors. JavaScript has built-in functions to do so by using the traditional document.
getElementById function. This function has a limited functionality and does not
allow selecting from the DOM using the CSS selector syntax as the jQuery selectors
do, however, now JavaScript includes querySelector() and querySelectorAll().
These two functions are more powerful and take CSS queries just as the jQuery selector
syntax does. While the querySelector() function returns a single DOM element,
the querySelectorAll() function returns a list of nodes. Both functions exist on the
document and element objects. So, you can query the document to find all matching
results in the entire document, or you can just query a single element to find all
matching objects under it. For example:

var postDiv = document.querySelector('#postDiv);
var allDivs = postDiv.querySelectorAll('div');

Alongside these two JavaScript selection methods, the WinJS.Utilities namespace
provides two functions with similar features for selecting elements, namely id() and
query(). Basically, these functions wrap the querySelector and querySelectorAll
functions but the return result value is different. The selector functions provided by
WinJS.Utilities return a QueryCollection object, which in turn exposes various
operations that perform actions over the elements of the collection, such as adding
and removing a class and others.

The following code shows the syntax for using id() and query(). We first create a
WinJS.Utilities object and call these two methods on it as shown:

var utils = WinJS.Utilities;
var postDiv = utils.id('postDiv');
var allParagraphs = utils.query('p');
allParagraphs.setStyle("color", "red");

The following screenshot shows the IntelliSense window that lists the functions
provided by the WinJS.Utilities namespace:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

JavaScript for Windows Apps

[46]

Querying the DOM is also useful when you need to apply a behavior to the elements
of document. For example, you might want to add a functionality whenever the user
clicks on a particular button. We do so by first querying for that element and then
adding a click handler to it. The following code shows how:

 WinJS.Utilities.id("Btn").listen("click", function () {
 var p = document.createElement("p");
 p.innerHTML = "i was just added";
 document.querySelector("#postDiv").appendChild(p);
});

In the previous code sample, the listen() method is used to wire an event handler
to the click event of the button with the ID Btn; in this handler, we are creating a
new p element and adding it to the div element with the ID postDiv.

The methods provided by the WinJS.Utilities namespace
are like a simplified subset of the functions provided in jQuery.

The following is a list of some of the available methods that you can call on the
objects returned in QueryCollection:

•	 addClass

•	 clearStyle

•	 getAttribute

•	 hasClass

•	 query(query)

•	 removeClass

•	 removeEventListener

•	 setAttribute

•	 setStyle

•	 toggleClass

•	 children

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 3

[47]

Understanding WinJS.xhr
The xhr function basically wraps the calls to XMLHttpRequest in a Promise object.
The function is useful for cross-domain and intranet requests, as shown in the
following code:

 WinJS.xhr(options).then(
 function completed(result) {
….
 },
 function error(result) {
….
 },
 function progress(result) {
….
 },

Since the WinJS.xhr function processes asynchronously and returns a Promise object,
we can pass the then() or done() method to it, as shown in the previous example.

You can use the WinJs.xhr function to connect to a web service and to download
different types of content, such as text or a JSON string that are specified in the
responseType option of WinJS.xhr. The responseType option takes a string value
that specifies the type of response expected from the request, and the types are
as follows:

•	 text: This is the default value and expects a response of type string
•	 arraybuffer: This expects an ArrayBuffer used to represent binary

content such as an array of type integer or float
•	 blob: This expects a Blob (Binary Large Object), which is an object

that represents immutable raw data and is typically of a large file size
•	 document: This expects XML content; that is, content that has a MIME

type of text/xml
•	 json: This expects a JSON string
•	 ms-stream: This expects an msStream object that handles streaming data

and is marked with a vendor-specific prefix (ms) because it is not defined
in the W3C specifications yet

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

JavaScript for Windows Apps

[48]

Besides responseType, a couple of more options can be applied to the xhr
(XMLHttpRequest) objects, which are all optional except url. These options
are as follows:

•	 url: This specifies a string that is either the absolute or relative URL
of the XML data or server-side XML web services

•	 type: This specifies a string that represents the HTTP method used;
for example, GET, POST, or HEAD

•	 user: This specifies a string that represents the name of the user used
for authentication, if required

•	 password: This specifies a string that represents the password used
for authentication, if any

•	 headers: This specifies an object that represents a custom HTTP header
•	 data: This specifies an object that contains the data that will be sent

with the HTTP request to the server; this data is passed directly to the
XMLHttpRequest.send method

•	 customRequestInitializer: This specifies a function that can be used
for preprocessing on XMLHttpRequest.

Let's populate the basic syntax on how to retrieve some text from a website as shown
in the following code:

WinJS.xhr(
{ url: 'http://www.msdn.microsoft.com/library', responseType: 'text'
})
.done(function (request)
{
 var text = request.responseText;
 document.getElementById("responseDiv").innerHTML = text;
},
function error(request) {
 var errorStatus = "Error returned: " + request.statusText;
 document.getElementById("errorDiv").innerHTML = errorStatus;
});

The previous code sample will retrieve the text from the specified url string and
insert it into the div element, responseDiv; in case there was an error during
processing, we retrieve it in the error-handling function via statusText.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 3

[49]

It is not recommended to use the XMLHttpRequest object
to request a transfer of extremely large objects that might take
a long time to complete, such as the Blob and the FormData
objects. Instead, you should consider using the file upload APIs
provided by the Windows Runtime API for such operations.

Introducing a new set of controls
Besides content, your app will need controls; regular HTML controls such as buttons,
select lists, and checkboxes; and some Windows 8 exclusive controls such as the
AppBar rating and settings. In addition to the standard built-in HTML controls,
WinJS provides a set of new and feature-rich controls designed for Windows Store
apps using JavaScript. These controls are basically objects available in the WinJS.UI
namespace; so, a date picker control will look like WinJS.UI.DatePicker. Here is a
list of the major WinJS.UI controls you will use in an app:

•	 DatePicker: This renders a customizable control that is used to select
a date value

•	 TimePicker: This renders a customizable control that is used to select
a time value

•	 Menu: This renders a menu flyout control for displaying commands
•	 AppBar: This renders an application toolbar for displaying commands
•	 FlipView: This renders a collection of items to be displayed one item

at a time
•	 ListView: This renders a collection of items in a customizable grid or

list layout
•	 Flyout: This is a control that displays a kind of a pop up control

containing information; however, it is lightweight and doesn't create
a separate window such as a dialog box

•	 Rating: This is a control that allows the user to rate something and can
display three types of ratings—tentative, average, or the user's rating

•	 SemanticZoom: This is a control that lets the user zoom between a
zoomed-in and zoomed-out view, which is supplied by two separate
child controls that provide each type of view:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

JavaScript for Windows Apps

[50]

•	 ToggleSwitch: This renders a control that lets the user switch an option
between two states (on and off)

•	 Tooltip: This renders a control that displays a tooltip to show more
information about an object, and it can support rich content (such as images)

•	 ViewBox: This renders a control that scales a single child element it contains
(without changing its aspect ratio) to make it fit and fill the available space

These controls are automatically styled with either one of the two
stylesheets that appear by default in any new Windows 8 Store app
project you create in Visual Studio. The two stylesheets (one with a
dark color theme and the other with a light one) will give your app
the look and feel of Windows 8.

Unlike standard HTML controls, WinJS.UI controls do not have dedicated markup
elements or attribute tags; for example, you can't go on adding a WinJS.UI.Rating
element such as <rating/> to your markup, as you would normally do with the
standard HTML elements such as <input/>. To add a WinJS.UI control, you need
to create an HTML element, say div, and use the data-win-control attribute to
specify the type of control you want. The following code shows the syntax to create
a WinJS.UI Rating control:

<div id="ratingControlDiv" data-win-control="WinJS.UI.Rating"> </div>

This will declare a rating element in the markup but will not load the control in your
app when you run it. In order to activate any WinJS control that you've declared in
the markup, the JavaScript code must call the WinJS.UI.processAll() function
that processes the document and initializes the controls you created. When you
create an app using any of the templates provided in Visual Studio, the default.
js file includes a call to WinJS.UI.processAll in the code, declared in the app.
onactivated event handler.

When you run the app, you will see the new Rating control as follows:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 3

[51]

You can also create a WinJS control in code by calling its constructor and passing the
HTML element that will host this control to the constructor. For example, if we have
div with an id attribute of ratingControlDiv, the JavaScript to create a Rating
control will be as follows:

var ratingHost = document.getElementById("ratingControlDiv");
var ratingControl = new WinJS.UI.Rating(hostElement);

In this case, there will be no need to call the WinJS.UI.processAll function, since
you didn't create the JavaScript control in the markup.

Also, setting the properties of a WinJS control differs from setting the properties
of a standard HTML control; the latter has dedicated attributes for that purpose.
For example, an input element of the type range has min and max attributes
whose values can be set in the markup as shown in the following code:

<input type="range" min="2" max="10" />

In the case of a JavaScript control, we have to use the data-win-options attribute
to set a property in the markup, which takes a string that contains one or more
property/value pairs (multiple properties are separated with a comma) and in
its basic form looks as shown in the following code:

data-win-options="{propertyName: propertyValue}"

The following syntax will show how to set the minRating and maxRating attributes
for a WinJS.UI.Rating control:

<div id="ratingHostDiv" data-win-control="WinJS.UI.Rating"
 data-win-options="{ minRating: 2, maxRating: 10}">
</div>

Summary
We have glimpsed some of the capabilities and powerful features of the WinJS in
Windows 8. We learned how to implement asynchronous programming using the
Promise object.

Also, we were introduced to the methods provided in the WinJS.Utilities
namespace that allow us to retrieve and modify the elements of an HTML document.
We also covered retrieving different types of content with the WinJS.xhr() function.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

JavaScript for Windows Apps

[52]

Finally, we learned about the new set of controls provided by the WinJS library
and how to create these JavaScript controls and set their properties.

In the next chapter, we will start developing apps with JavaScript by introducing
the needed tools first and then learn about the templates provided for Windows 8
JavaScript apps. Also, we will create a very basic app and understand the anatomy
of the JavaScript app. We will also learn about the ListView control.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps
with JavaScript

In this chapter we will learn how to get started with developing a Windows 8
app using JavaScript. First, we will learn about the tools and then we will cover
how to acquire a developer license. Afterwards, we will start with one of the
templates provided for Windows Store apps development, build a sample app
from a blank template, and modify it so that we get to see to know some of the
features of a JavaScript app.

Introducing the tools
Windows Store apps are a new type of application introduced by Windows 8 and
run only on that platform. So, in order to start developing, you will first need to have
Windows 8 installed on your machine and second, the required development tools.

There are two options for acquiring Windows 8; one option is to get it from the
Subscriber Downloads on MSDN, if you have a subscription there. Alternatively,
if you don't have an MSDN account, you can get the 90-day evaluation version
of Windows 8 Enterprise from the Evaluation Center, found on the MSDN website
via http://msdn.microsoft.com/en-US/evalcenter/jj554510.aspx?wt.mc_
id=MEC_132_1_4.

Note that the Evaluation Edition cannot be upgraded after expiry.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with JavaScript

[54]

After installing Windows 8, you will need to download the developer tools, which are
available for free on the Windows Dev Center page on the MSDN site. The Windows
Dev Center, with its new and improved layout, is your starting point for all the tools
and resources you might need and can be found under the section Downloads for
developing Windows Store apps at http://msdn.microsoft.com/en-US/windows/
apps/br229516.aspx.

The essential download is the bundle containing Visual Studio Express, which
will be your tool to develop Windows apps. The link to this download is available
under the Visual Studio Express 2012 for Windows 8 section and contains the
following files:

•	 Microsoft Visual Studio Express 2012 for Windows 8
•	 Blend for Microsoft Visual Studio 2012
•	 Windows 8 software development kit (SDK)
•	 Windows Store apps project templates (available within Visual Studio 2012)

Additionally, you can find other available downloads on that page, such as:

•	 Design assets: This includes the necessary Photoshop templates (.psd files),
which include templates, common controls, and common components such
as contracts, notifications, and tiles needed for designing an app.

•	 Sample App Pack: This includes hundreds of code samples from Microsoft
to help jump-start your project quickly and learn about most of the features.
This is available in all or specific programming languages.

•	 Hands-on labs for Windows 8: This includes a series of eight hands-on lab
modules, which in turn guide you through the development of a Windows
Store app titled Contoso Cookbook. This incorporates many of the key new
features available in Windows 8. These lab series are available in JavaScript
and HTML, or C# and Extensible Application Markup Language (XAML).

•	 Live SDK: This includes a set of controls and APIs that we can use to enable
the app to integrate Single Sign-on (SSO) with a Microsoft account and
access information from SkyDrive, Hotmail, and Windows Live Messenger.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 4

[55]

Since Windows Store app development in Visual Studio 2012 is only
supported on Windows 8, you cannot develop apps on Windows 7
even if you have Visual Studio 2012 installed. Moreover, you can't
develop Windows Store apps on Windows Server 2012 since the
developer licenses aren't available for it.
Note that you can use any of the other Visual Studio 2012 editions
to develop Windows Store apps, including the Ultimate, Premium,
Professional, and Test Professional editions.

Getting a free developer license
In order to start developing Windows Store apps, you will need to have a developer
license for Windows 8. This license lets you install, develop, test, and evaluate apps
locally before they are tested and certified by the Windows Store. Moreover, the
developer licenses are free and you do not need a Store account to get one; it only
requires a Microsoft account and you can acquire more than one license per account.
It expires in 30 days and must be renewed. If you already have a Windows Store
account, the license will serve you for 90 days. After you acquire a license on a local
machine, you won't be prompted again on that machine unless it expires, or you
remove it (maybe by formatting or uninstalling Visual Studio). It is quite easy to
get one; you can get a developer license using Visual Studio 2012. When you run it
for the first time on Windows 8, it will prompt you to obtain a developer license; all
you need to do is to sign in with your Microsoft account. You can always attempt to
acquire or renew a developer license for Windows 8 from inside Visual Studio using
the store options, which we will discuss in more details in Chapter 10, Packaging and
Publishing, when we learn about publishing the app.

Bear in mind that the first time you try to run an app,
you will be prompted to acquire a developer license
if you haven't already done so.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with JavaScript

[56]

The following screenshot shows the process using Visual Studio 2012 Ultimate.
Go to Project | Store | Acquire Developer License.

If you're using the Express edition, you will have a Store option directly in the
top menu, not underneath Project. You simply have to go to Store | Acquire
Developer License.

Choosing not to acquire or renew a developer license
will result in an error (code DEP0100) when you try
to build or deploy the app in Visual Studio.

After you install Windows 8 and the required tools and obtain a developer license,
you're ready to start building your first app. You start by choosing a programming
language to use. As we previously mentioned, Windows 8 allows you to build on
your programming language knowledge base and develop with the languages
you already know (unless you want to learn something new). If you are into web
development, you can choose JavaScript as your programming language and use
the latest technologies in web development (HTML5 and CSS3, to name a few), and
that's what this book is all about. If you're coming from a .NET background, you can
choose Visual C# or Visual Basic and XAML. And you have the C++ option with
either C++ and XAML or C++ and DirectX.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 4

[57]

Using Visual Studio and its templates
So we now have the tools. With Visual Studio as our playground and JavaScript
as our programming language, we are set and ready to develop. We will start by
creating a new project for Windows Store. Go to File | New Project. Drill down
under Installed, go to Templates and then to JavaScript | Windows Store, and
select a template type as the following screenshot shows:

As you see in the previous screenshot, on the center pane of the New Project dialog
there are five templates to choose from. These templates come with Visual Studio
2012 and provide a good starting point and help you jump-start and speed up the
development of your apps. These project templates, as per their order of appearance
on the New Project dialog, are as follows:

•	 Blank App: This is a basic project template that creates an empty Windows
Store app that compiles and runs. However, it contains no user interface
controls or data.

•	 Grid App: This is a project that provides a grid view format of the content.
It is a good starting point for an app that allows users to browse through
categories of data to find content. A few examples of its use include RSS
readers, shopping apps, news apps, and media gallery apps.

•	 Split App: This is a project that provides a split view of the content,
whereby the data is displayed in a two-column master/detail view with
the list of data on one side and the details of each single data item on the
other side, just as in Outlook. A few examples of its uses include news
reader apps, sports scores apps, and e-mail apps.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with JavaScript

[58]

•	 Fixed Layout App: This is a project with a basic and minimal template,
similar to an app created with the Blank App template, but the difference
is that the content in this layout is aimed at the fixed-layout viewport,
whereby the container is automatically resized when the window size
changes to conform to the display area; this scaling is ensured using the
ViewBox control.

•	 Navigation App: This is a project that creates an app with the single-page
navigation model recommended for Windows Store apps. You cannot
implement a navigation model by just adding anchor links to the markup;
instead, the navigation model is implemented using the navigator.js file,
which can also be found in the Grid and Split templates, while the Blank
App and Fixed Layout App templates do not include this file and thus you
will have to add the file manually.

The Grid App and Split App templates are not only a good
starting point to build an app, but are also great templates
for learning and will give you a good idea about how the
app is built and what it is composed of.

The three templates Blank App, Grid App, and Split App are shared between all
the available programming languages for Windows Store development. Each project
template includes the necessary files needed to implement the feature it represents
without any development from your side; for example, creating a new Grid App and
running it will result in the following app:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 4

[59]

The result is a Windows Store-ready app that contains dummy data with navigation
enabled and even supports snapped and fill layouts, which are the layouts that apps
exist in when the resolution is split between two apps that are side by side. All of this
without even writing a single line of code! So, imagine if you customize this minimal
app a little by applying different styles to the layout and display real data in the
content (say, RSS feeds from a news website), you will have a news app that is more
than 75 percent ready for the Store (missing a couple of features such as semantic
zoom, app bar, and settings) in no time.

You can also download samples directly from Visual Studio. These samples will
provide completed and working code samples that will compile and run as a Windows
Store app, with the purpose of demonstrating the various new programming models,
platforms, features, and components available in Windows 8.

Project item templates
In addition to the project templates, you have language-specific item templates
exclusive to Windows Store apps, in our case, called JavaScript item templates.
These item templates are app files that can be added to an already existing project
and contain commonly used code and functionality (consider it a user control), and
also help to reduce development time. Item templates can be added by right-clicking
on Project from the top menu and then going to Add | New Item. There are four
JavaScript item templates available; they are as follows:

•	 Page Control: This contains the basic content and markup for a page in the
app, which includes a header section with a Back button and a main content
section. Each Page Control template will include three files to be added to
the project (an HTML file containing the markup needed, a JavaScript file
containing the code related for the page, and a CSS file that provides the
style specific to the page).

•	 File Open Picker Contract: This will add the functionality that enables
an app to provide its data as a file list to other requesting apps using
a File Picker dialog. It will also display the files in a ListView control.
A typical use for this would be when creating a photo-picker dialog.

•	 Search Contract: This will add the search contract that allows the app
to respond to search queries coming from Search Charm in Windows 8.
It contains a search results page to present the results to the user. It is
important to add this contract if your app has some data that can be
searched for.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with JavaScript

[60]

•	 Share Target Contract: This will add the share contract to the app, which
enables an app to expose data for sharing with other apps and make it
integrate with Share Charm in Windows 8. So, if the app has this contract, it
will appear in the list of apps in the Share UI. A typical use for this template
would be to allow users to post links or photos to Facebook, Twitter, or any
other app that receives shared content. Vice versa, it will also enable the app
to receive shared content; thus, the app can behave like Facebook or Twitter.

The following screenshot shows the Add New Item dialog with the previously listed
project item templates:

I recommend you add each item template to a separate folder
with a correlated name. Since each item template adds three
related files, the solution will be neater and more organized if
you group them into separate folders. For example, a folder
for pages and under it a folder for each page; the same goes
for the contracts.

After you chose an app template and it was loaded onto Visual Studio, you would
have basically created a very simple app; this app can directly compile and run.
Using Visual Studio, you can run the app either on your local machine or on the
Simulator. To run it on your local machine, simply press F5 to build, deploy, and
start the app.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 4

[61]

Note that you can instead just deploy the solution but the app
will not run directly; you will need to find it among the other
apps in the Start menu and launch it manually instead.

There is a third option to run a remote device connected directly through an Ethernet
cable. To use the simulator, you only need to select from the options in the run menu
as shown in the following screenshot:

The Windows 8 Simulator is a great tool to help you test and debug the app; it allows
you to test the features as if you were working with the real device, especially if you
do not have a tablet or a touch-enabled device during development. It will enable the
app to change resolutions and screen orientations between landscape and portrait
and toggle between the different app layouts and view states (snapped and full). In
addition, you can test how the app responds to touch and gestures such as swipe and
pinch to zoom. We wouldn't be able to try all these features and functionalities on a
laptop or PC during development.

When you run the app in Visual Studio in the debug mode, you
can make changes to the code and markup and refresh the app to
see the changes without having to rebuild/rerun it. You can do this
using the Refresh Windows App button, which will appear next to
the pause, stop, and restart debugging buttons, only after you run
the app from within Visual Studio.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with JavaScript

[62]

Getting started with Blank App
Let's start creating a minimal app using the Blank App template; the first thing we
need to do is launch Visual Studio 2012, create a new project, and go to JavaScript
| Windows Store | Blank App. Although the Blank App seems empty when you
run it, it contains several files that are essential to any Windows Store app you
create using JavaScript; all the other templates will have these files. The following
screenshot shows the structure of this app listed in the Solution Explorer window:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 4

[63]

This previous screenshot shows the skeleton of a simple app, with the following files:

•	 Windows Library for JavaScript 1.0: The Windows Library for JavaScript
is a library of CSS and JavaScript files. As you drill down into this folder you
will see that it contains two subfolders, as follows:

°° css: This folder includes the two main CSS stylesheets that contains
the set of styles that gives the app the Windows 8 look and feel.
The two stylesheets are ui-dark.css and ui-light.css. As their
names imply, the first will apply a dark color theme to the app and
the latter a light color. You can choose either one by referencing it
in the HTML pages.

°° js: This folder includes base.js and ui.js; these two files
contain the JavaScript APIs that provide the controls, objects,
and helper functions, all organized into namespaces that will
make the development experience using JavaScript much easier.

•	 default.css: This is the stylesheet that contains the CSS styles for the app.
•	 images: This folder contains the images needed to present the app and its

identity (two logos, the splash screen image, and the store logo).
•	 default.js: This JavaScript file implements the main functionality of the

app and contains the code that handles your app's life cycle. In this file, you
can write any additional code that is related to the default.html page.

•	 default.html: This is the start and home page that is first loaded when the
app runs. It provides the markup for the content host (where each page is
loaded into the main window).

•	 package.appxmanifest: This is the manifest file. It basically describes the
app package for Windows by specifying the properties that describe an app,
such as name, description, start page, and so on.

•	 TestApp_TemporaryKey.pfx (AppName_TemporaryKey.pfx): This file signs
the .appxmanifest file.

Let's have a look at the default.html page, which is the start page of the app
(and in this case, the only page):

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>TestApp</title>

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with JavaScript

[64]

 <!-- WinJS references -->
 <link href="//Microsoft.WinJS.1.0/css/ui-dark.css" rel="stylesheet"
/>
 <script src="//Microsoft.WinJS.1.0/js/base.js"></script>
 <script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

 <!-- TestApp references -->
 <link href="/css/default.css" rel="stylesheet" />
 <script src="/js/default.js"></script>
</head>
<body>
 <p>Content goes here</p>
</body>
</html>

As you can tell from Doctype html, the page is HTML5. We have the title of the
app in the <head> and then the reference for the Windows Library for JavaScript
(WinJS) files. The references are marked with the comment WinJS references.
The .css file is referenced first so that the loading of the scripts doesn't delay or
hinder the loading of the styles and, in case the .js files apply some modifications
to the stylesheet, the styles need to be loaded beforehand. The dark color theme
is applied; you can simply change it to the light one by changing the reference
as follows:

<link href="//Microsoft.WinJS.1.0/css/ui-light.css" rel="stylesheet" />

Try not to modify the CSS and JavaScript files of WinJS.
It is better to create styles or JavaScript functions that
override existing styles and functionalities in different
files and apply them to the app.

Under the WinJS references, there are references to the stylesheets and JavaScript
files that are app-specific and clearly differentiated by the comment.

Then comes the body. Here, in the example of a blank app, the body contains
nothing but simple text.

If you attempt to launch the app as is, you will see a black color background covering
the screen and will also see the text: Content goes here. And just before this page
appears, you will notice that a splash screen appears for a few seconds, displaying
the image specified for the splash screen in the manifest file. Let's try to put some
life into this blank app by modifying our start page and adding some markup to
the body, just as you would add to any HTML page you've dealt with before.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 4

[65]

Replace the existing paragraph element with the following:

<body>
 <h1>The Test App</h1>
 <p>Add some content </p>
 <input id="contentInput" type="text" />
 <button id="sayButton">Have your say</button>
 <div id="contentOutput"></div>
</body>

Run the app; it will display the markup we just added. We can type in any text in
the input element but clicking the button will have no effect. So let's create an event
handler for this button to output in div whatever we add in the input element. We
need to create the event handler in the default.js file because it's where we write
the additional code that interacts with the default.html page.

First let's have a look at this default.js file. You will notice some code inside it
wrapped by a single function, shown as follows:

(function () {
 "use strict";
 …
})();

This code represents a self-executing anonymous function that wraps all your code
to avoid any naming conflicts and keeps the global namespace clean of unnecessary
identifiers. The first line of code in the anonymous function declares the keyword
use strict, which turns on the strict mode for the JavaScript code. This strict mode
provides better error-checking, such as preventing you from assigning a value to a
read-only property. After this line, you will see the rest of the code, which handles
the activated and checkpoint states of the app by adding the app.onactivated and
app.oncheckpoint event handlers. The code we add inside the app.onactivated
event handler will be added when the app starts.

Now back to the button event handler; let's create a function as follows:

function buttonClickHandler(eventInfo) {
 var text = document.getElementById("contentInput").value;
 var outputString = "I say " + text + "!";
 document.getElementById("contentOutput").innerText = outputString;
}

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with JavaScript

[66]

Add this function inside the anonymous function before the app.start() call at the
bottom line. This function retrieves the text from the input element and adds it to the
div element. To add this function to the events of the button (in this case, the onclick
event), we need to register an event handler with the button. The recommended way
to do so is by calling the addEventListener method. We need to register this event
handler when the app gets activated. So, we should add it inside the app.onactivated
event handler. And the code will look as follows:

var app = WinJS.Application;
var activation = Windows.ApplicationModel.Activation;

app.onactivated = function (args) {
 if (args.detail.kind === activation.ActivationKind.launch) {
 if (args.detail.previousExecutionState !== activation.
ApplicationExecutionState.terminated) {
 // TODO: This application has been newly launched. Initialize
 // your application here.
 } else {
 // TODO: This application has been reactivated from suspension.
 // Restore application state here.
 }
 args.setPromise(WinJS.UI.processAll());

 // Retrieve the button and register our event handler.
 var sayButton = document.getElementById("sayButton");
 sayButton.addEventListener("click", buttonClickHandler, false);
}
};

The app variable is a global variable representing an instance of the Application
class that provides application-level functionality; for example, handling different
application events such as the onactivated event that we saw in the previous
code listing.

Inside the onactivated handler, the code checks to see the type of activation
that has occurred; in this case, it is a launch activation, which means that this app
was activated by the user when it was not running. Then a call is made to WinJS.
UI.processAll().This will scan the default.html file for any WinJS controls and
will initialize them. Since the button is not a WinJS control and rather a basic HTML
control, we could add it before the call to WinJS.UI.processAll(), but it's good
practice to register the event handlers after it.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 4

[67]

Run the app, enter some text in the textbox, and the content is displayed when the
button is clicked, as the following screenshot shows:

Understanding the ListView control
In the previous chapter we introduced a new set of controls provided by the
Windows Library for JavaScript; one of these controls was the ListView control,
marked as WinJS.UI.ListView. What this object basically does is displays data
items in a customizable list or grid. To create a ListView control, we need to add
the data-win-control property to a div element and set its property to WinJS.
UI.ListView. In the default.html page, add the following code inside the
body tag:

<body>
 <div id="sampleListView" data-win-control="WinJS.UI.ListView">
 </div>
</body>

This will create an empty ListView. So, if we run the app, there will be nothing to
see. Since it is a WinJS control, it will not be rendered in the markup until after we
call the WinJS.UI.processAll function.

Let's add some data for the sampleListView control to display. The data that
might come from a database from the Web or from a JSON data source, will create
a data source manually, and preferably in a separate JavaScript file so it would be
easier to maintain. So, in Visual Studio, under the js folder, add a new item and
select a JavaScript file; name it data.js. Open this newly created file and create
an anonymous function with the strict mode on, just as we saw in the default.
js file; inside this function, let's create a sample array of objects that make up the
data source we need. Give each object in the array the three properties firstName,
lastName, and Age.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with JavaScript

[68]

The resulting code will look as follows:

(function () {
 "use strict";
 //create an array for a sample data source
 var dataArray = [
 { name: "John Doe", country: "England", age: "28" },
 { name: "Jane Doe", country: "England", age: "20" },
 { name: "Mark Wallace", country: "USA", age: "34" },
 { name: "Rami Rain", country: "Lebanon", age: "18" },
 { name: "Jean Trops", country: "France", age: "56" }

];

 //create a list object from the array
 var sampleDataList = new WinJS.Binding.List(dataArray);
})();

Next, we use the array we just created to create a List object; then we need to
expose this List object by declaring a namespace for it and adding the List as
a public member:

 // Create a namespace to make the data publicly
 // accessible.
 var publicMembers =
 {
 itemList: sampleDataList
 };
 WinJS.Namespace.define("DataSample", publicMembers);

In order for the ListView control to be able to access this List, we used the WinJS.
Namespace.define function to create a namespace and add the List as one of
its members, thus making the List publicly accessible since it is created in an
anonymous function, which keeps it private. The WinJS.Namespace.define
function takes two parameters, as you noticed in the previous code. The first
parameter is the name of the namespace to create, and the second represents the
object (publicMembers) that contains one or more key/value pairs.

After creating the data source and making it accessible by the ListView control, the
next thing is to connect the data source to the ListView control. That has to be done
in the default.html file. Let's pick up from where we left our sample blank app.
We need to add a reference to the data file we just created, as follows:

<!-- Sample data file. -->
<script src="/js/data.js"></script>

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 4

[69]

We then add the data-win-options attribute to the div element and use the data
source we created inside data.js to set the itemDataSource property inside the
data-win-options attribute. Set the ListView control's itemDataSource property
to DataSample.itemList.dataSource as follows:

<div id="sampleListView" data-win-control="WinJS.UI.ListView"
 data-win-options="{ itemDataSource : DataSample.itemList.dataSource
}">
</div>

The DataSample.itemList.dataSource namespace comprises DataSample,
which is the namespace we registered previously; itemList, which is the name
of the property defined on the object we registered on the namespace; and finally
dataSource, which is a property of the WinJS.Binding.List method (we are able
to call it on itemList because the latter was assigned to the List object we created
from the array).

If we run the app now, we will see that the ListView control displays the array we
created with no formatting, as follows:

 { name: "John Doe", country: "England", age: "28" }
 { name: "Jane Doe", country: "England", age: "20" }
 { name: "Mark Wallace", country: "USA", age: "34" }
 { name: "Rami Rain", country: "Lebanon", age: "18" }
 { name: "Jean Trops", country: "France", age: "56" }

We can style this ListView control by overriding the default styles set in the win-
listview class, which is defined by the Windows Library for JavaScript, to style
the ListView control. In order to override the default styles and apply some to just
this ListView control, copy the win-listview class and precede it with the specific
ID of the div element we created, as follows:

#sampleListView.win-listview {
 width: 500px;
 border: 1px solid gray;
}

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with JavaScript

[70]

We can add more styling to the ListView elements inside and we can define an item
template using WinJS.Binding.Template, which is used to define the markup we
want to use to display each list item and its styles. It is very easy to create a WinJS.
Binding.Template control; in the HTML page, add a div element and set the property
of the data attribute data-win-control to WinJS.Binding.Template. Inside it, add
another div element that will serve as a parent for the template's contents, because
WinJS.Binding.Template must have a single root element. Inside this parent element,
we add the markup that we will create, which the ListView will use to populate each
data item it contains. Now the template will look like this:

<body>
<div id="sampleTemplate" data-win-control="WinJS.Binding.Template">
 <div style="width:200px; height: 100px">
 <div>
 <!-- Displays the "name" field. -->
 <h2> </h2>
 <!-- Displays the "country" field. -->
 <h3> </h3>
 <!-- Displays the "age" field. -->
 <h6 style="color:red"> </h6>
 </div>
 </div>
</div>
</body>

In order to link each element to a specific data item property, we use the data-win-
bind attribute on each element that displays data. The data-win-bind attribute uses
this syntax: data-win-bind="propertyName: dataFieldName". Hence, to set the
name property on the h2, h3, and h6 elements, we use the following code:

<!-- Displays the "name" field. -->
<h2 data-win-bind="innerText: name"></h2>
<!-- Displays the "age" field. -->
<h3 data-win-bind="innerText: country"></h3>
<!-- Displays the "age" field. -->
<h6 style="color:red" data-win-bind="innerText: age"></h6>

It is important to note that the list item template (WinJS.Binding.Template) should
be before the ListView control in the markup, simply because the HTML markup is
hierarchical and each UI element will be rendered as it is being encountered. So, when
the ListView control is being rendered and is bound to an itemTemplate element, that
itemTemplate element must exist first; otherwise it will throw an error.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 4

[71]

Finally, we need to apply the binding template we just created on the ListView control.
Thus, use the select syntax to set the itemTemplate property of the ListView to
sampleTemplate, as follows:

<div id="sampleListView" data-win-control="WinJS.UI.ListView"
data-win-options="{ itemDataSource : DataSample.itemList.dataSource,
itemTemplate: select('#sampleTemplate') }">
</div>

If we run the app now, the ListView control will display the data in a more presentable
manner. Here is how it will look:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with JavaScript

[72]

Summary
Throughout this chapter we have covered the basics for creating a Windows Store app
using JavaScript. We got introduced to the tools, and what we need to get going with
the development. Then we went over using Visual Studio 2012 and we got to have a
look at the templates provided for the development using JavaScript.

We saw how to build an app from scratch and on the way we got to see the anatomy
of a JavaScript Windows Store app; we modified this blank app to make it interact in
the simplest way possible, at the click of a button. Finally, we learned how to use the
ListView control to display data.

In the next chapter we will learn how to get the data that we want to display.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Binding Data to the App
In this chapter we will learn how to implement data binding from different data
sources to the elements in the app. The Windows library for JavaScript provides the
data source objects that can be used to populate the WinJS controls such as ListView
or FlipView with different sorts of data. We have the WinJS.Binding.List object
that is used to access arrays and JSON data and the StorageDataSource object that
provides access to information about the filesystem. These two data source objects
enable us to query and bind to items in the data source. Additionally, we will learn
how to apply sorting and filtering on the data source and display its data using the
ListView control.

Getting the data
The Windows library for JavaScript binding (WinJS.Binding) provides a mechanism
to bind data and styles to the HTML elements. The binding provided by the Windows
library for JavaScript is one-way by default, so the HTML elements are updated when
the data changes; however, any change in the HTML elements does not reflect on the
data being bound to. Let's see this in action, and we'll start with the very basic kind
of binding; that is, a declarative binding between an HTML element and a simple
JavaScript object that contains only data.

First we will check for the WinJS.Binding.optimizeBindingReferences property,
and set it to true if not set already.

It is important to always set the WinJS.Binding.
optimizeBindingReferences property to true while performing
a declarative binding. This property determines whether or not the
binding should automatically set the ID of an element. This property
should be set to true in apps that use WinJS.Binding.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Binding Data to the App

[74]

We'll create a sample person JavaScript object that contains two properties, name and
badgeColor, as shown in the following code:

var person = { name: "John", badgeColor: "Blue"};

Now we'll bind an HTML span element to the person object using the data attribute
data-win-bind, as shown in the following code:

In order for the binding to take place and consequently have the name appear in
the span element, we must call the WinJS.Binding.processAll() method and
pass it the DOM element and the dataContext object; it will start searching for
the data-win-bind attribute at this specified element and then go through all the
descendants of that element.

The following code retrieves the span element from the DOM and then passes the
parameters to the WinJS.Binding.processAll() method:

var nameSpan = document.getElementById("nameSpan");
WinJS.Binding.processAll(nameSpan, person);

If you are using the default.HTML page for this example,
you will need to add the code after the call to args.
setPromise(WinJS.UI.processAll()) has been
made so that all the controls have been initialized, as
explained in Chapter 3, JavaScript for Windows Apps.

Run the project and you will see the name John on the screen. The preceding code
implements only a static binding, which means the text is not affected by the change
in data. This is because a JavaScript object by itself is not capable of notifying the
application when it changes. We can use WinJS.Binding.as to change this object to
an observable object, which will enable the data source to get notified when items in
that object change. The following code snippet will create a bindingSource object that
manifests an observable instance of the person object we created; hence, any change
made to bindingSource will be reflected in the HTML element it is bound to:

var bindingSource = WinJS.Binding.as(person);

Let's see this dynamic data binding in action. First, add an input type element to
enter name values and a button element, as shown in the following code as shown
in the following code:

<input type="text" id="nameInpt" />
<button id="setNameBtn">Get name</button>

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 5

[75]

Then, we write the code that simulates a change in the person data object. We do
this by setting the name property in the person object to the new value entered in
the input element on the click event for the setNameBtn button, as shown in the
following code:

document.getElementById("setNameBtn").onclick = function () {
 var newName = document.getElementById("nameInpt").value;
 bindingSource.name = newName;
}

Run the project and try entering new values in the input element, and then click on
the button to see the names getting changed.

Not only can we bind data to an HTML element but we can also apply binding
at the level of the style. Going back to the previous example, let's add the style.
background value to the data attribute and bind it to the badgeColor field of the
person object, as shown in the following code:

data-win-bind="innerHTML: name; style.background: badgeColor"

Make the preceding changes and refresh the app, and the name will be highlighted
in blue. When you run the app, the output should look like the following screenshot
(if you are referencing the ui-light.css style sheet, the output will be a darker
shade of blue):

There are several other approaches for data access and storage in Windows Store
apps; the data sources can be either local or remote and your choice of storage
basically depends on the scenario at hand. For example, a Windows Store app that
needs to be connected and alive would require access to data from a remote online
source. The data might be fetched from the web URLs or RESTful services. The ideal
way to consume these web services is using the WinJS.xhr function that we were
introduced to in Chapter 3, JavaScript for Windows Apps.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Binding Data to the App

[76]

The WinJS.xhr function will make an asynchronous request to a web URL or a
service and return the data in response upon a successful call. Let's assume we
need to get some tweets and parse the results; the call is pretty straightforward
in this case. To do this, provide the URL to the Twitter search service that will
search for all the tweets that contain windows 8, as shown in the following code:

WinJS.xhr({
url: "http://search.twitter.com/search.json?q=windows8"}).then(
function (result) {
});

The output will be all the tweets that match the query wrapped in a JSON string,
which is the data format provided by many websites. Windows 8 JavaScript has
native support for JSON; hence, we can simply deserialize the JSON string into
an object by calling JSON.parse(jsonString). Let's append the preceding code
to get the following code:

WinJS.xhr({
 url: "http://search.twitter.com/search.json?q=windows8"}).then(
 function (result) {
 var jsonData = JSON.parse(result.responseText);
 });

We can also read the data from a file by using the Windows.Storage API file provided
by Windows. If we have a readable file and an instance of storageFile that represents
it, we can read the text from the file or we can read bytes using a buffer. In order to
read text from a file, we can make use of the readTextAsync(file) function of the
fileIO class as shown in the following code:

Windows.Storage.FileIO.readTextAsync(sampleFile).then(
function (fileContents) {
 // some code to process the text read from the file
});

When the preceding code runs successfully, this function returns the contents of the
file as a text string passed via the variable fileContents.

Almost the same thing applies when reading a byte from a file; however, we call the
method readTextAsync(file) and pass it the file. We can then capture the buffer
data in the response after the async process completes using the then() or done()
method, as shown in the following code:

Windows.Storage.FileIO.readBufferAsync(sampleFile).then(
function (buffer) {

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 5

[77]

 var bufferData = Windows.Storage.Streams.DataReader.
fromBuffer(buffer);
});

In the preceding code, we used the DataReader class to read from the buffer;
this class provides the functionality to read strings from an in-memory stream
and process the buffer.

Displaying the data
We have learned about the different sources of data and seen a couple of examples
on how to get the data. Now we will see how to format and display that data. In
the previous examples, we saw how we can bind data to any HTML element, but
fortunately there is a better way to do this. The better way is using the Windows
library for JavaScript, which provides controls and templates that make it easy to
format and display the data. The most famous controls are ListView and FlipView;
when it comes to binding and displaying data, the same technique applies for both but
we'll use ListView in this chapter. It is not out of personal preference but a question
of taking advantage of the features of ListView control, since it provides a flexible
way to display data with built-in support for the cross-slide (touch) gesture; also, it is
performance-optimized. Moreover, it delivers an appearance and a behavior that are
consistent with Windows Store apps. The steps to do the binding and displaying the
data are as follows:

1.	 Get the data.
2.	 Create a WinJS.Binding.List object to wrap the data.
3.	 Create a ListView element.
4.	 Set itemDataSource of the ListView element to the

WinJS.Binding.List object.

Let's continue with the example we used previously for getting tweets via the web
URL; the code returns a JSON string that is our data here, so the next step is to create
a WinJS.Binding.List object as follows:

WinJS.xhr({
 url: "http://search.twitter.com/search.json?q=windows8"}).then(
 function (result) {
 var jsonData = JSON.parse(result.responseText);
 //create a binding list object from the json
 var bindingList = new WinJS.Binding.List(json.results);
 });

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Binding Data to the App

[78]

We just did steps 1 and 2; step 3 involves creating a ListView element in the DOM
and getting an instance of it in the JavaScript code.

In HTML, we use the following:

<div id="sampleListView" data-win-control="WinJS.UI.ListView" >
</div>

In JavaScript, we use the following:

//get an instance of the ListView Control
var listView = document.getElementById("sampleListView").winControl;

In step 4, we set the itemDataSource attribute of the ListView object to dataSource
of the bindingList object and the complete code will look like the following
code snippet:

WinJS.xhr({
 url: "http://search.twitter.com/search.json?q=windows8"}).then(
 function (result) {
 var jsonData = JSON.parse(result.responseText);
 //create a binding list object from the json
 var bindingList = new WinJS.Binding.List(jsonData.results);
 //get the list view element from the DOM
 var listView =
 document.getElementById("sampleListView").winControl;
 //bind the data sources
 listView.itemDataSource = bindingList.dataSource
 });

If you are adding the ListView control or any other WinJS.UI control in the
default.html page, remember to add the previous code in a then() or done()
 call on the function WinJS.UI.ProcessAll(), as shown in the following code:

args.setPromise(WinJS.UI.processAll().then(function () {
 //get the list view element from the DOM
 var listView =
 document.getElementById("sampleListView").winControl;
 //bind the data sources
 listView.itemDataSource = bindingList.dataSource
}));

The reason for adding that code is that this function processes the Windows library
for JavaScript controls and renders these controls in the DOM.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 5

[79]

Now let's build and run the project. The output will be a list containing the tweets,
each with its properties, as shown in the following screenshot:

Although the ListView control does the job of binding the data automatically, it
looks messed up and needs formatting. The WinJS control provides templates that
can be used in combination with the ListView and FlipView objects to specify
how each item should be displayed and which data it will show. Templates can
be defined declaratively as a WinJS control and provide its structure and styles,
either by specifying the div element in which it should appear or by using the
render method to create its own div element. Let's see this in action. Inside the
DOM, add a div element and assign it to WinJS.Binding.Template via the
data-win-control attribute as follows:

<div id="listTemplate" data-win-control="WinJS.Binding.Template"></
div>

Then create the internal structure of the template by first adding a root div element
and then adding the bound elements inside that root div, as shown in the following
code snippet:

<div id="listTemplate" data-win-control="WinJS.Binding.Template">
 <div class="templateItem" style ="width:300px; height:100px;">
 <img src="#" style="float:left; width: 60px; height: 60px;"
 data-win-bind="src: profile_img_url" />
 From:<span data-win-bind="innerText:
 from_user_name">

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Binding Data to the App

[80]

 Date:<span data-win-bind="innerText:
 created_at">

 Text:
 </div>
</div>

You may have noticed in the previous screenshot that the listed data items contained
properties marked with quotes and followed by a colon; for example, "created_
at": and "from_user":. These properties represent the data that was returned in
the jsonData object from the web call to Twitter and these properties are passed
as parameters to the data-win-bind attribute in the listTemplate element to be
rendered in the DOM.

Next, we should assign this newly created template to the ListView control we
created earlier, by specifying a value for itemTemplate in the data-win-options
attribute, as shown in the following code:

<div id="listViewSample" data-win-control="WinJS.UI.ListView"
data-win-options="{ itemTemplate: select('#listTemplate') }">
</div>

Run the project and you will see something similar to the next screenshot. Since
live data is being fetched from Twitter, the values will change according to the
specific query:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 5

[81]

Sorting and filtering the data
We got the data and we used templates to display it and bind it to the WinJS control.
Now, what if we need to sort the data items or even filter out unwanted items based
on a certain criterion? The binding list API provided by the WinJS library handles this
seamlessly using built-in methods such as createSorted and createFiltered. If we
go back to the code we wrote earlier to fetch the tweets and write the bindingList
variable we created, which is an instance of WinJS.Binding.List, and try to call the
method createSorted, you will notice the autocomplete feature lists the other two
built-in functions provided for this functionality, as shown in the following screenshot:

These two methods will create a view over its data called "sorted projection". The
createSorted method will return a SortedListProjection object, which represents
a sorted view over the data it holds, and similarly the createFiltered method will
return a FilteredListProjection object representing a filtered view over the data.
The main advantage of these two projections is that they are fully observable, which
means that when the data in the list changes, its corresponding projection will get a
notification and update itself. Additionally, when the projection changes itself, it will
notify any listening object about its change.

We can sort this binding list by calling the createSorted method, which takes the
sorting function parameter that handles the sorting logic. Let's sort the tweets we
fetched alphabetically by user name. Use the following code:

//to recall this was the bindinglist variable we had
var bindingList = new WinJS.Binding.List(json.results);
//create a sorted list instance from that bindingList
var sortedList = bindingList.createSorted(function (first, second) {
return (first.from_user_name).toString().localeCompare(second.from_
user_name);
});

The createSorted function will do the sorting logic inside the sorter function
parameter that, in this case, compares the from_user_name field from the list
and returns the list that is sorted alphabetically. Note that the fields to compare
are fields from the data items in the list.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Binding Data to the App

[82]

Once we are done with the sorting, the itemDataSource attribute of the ListView
control should now bind to the newly created sortedList method in order to see
the following code:

//pass the sortedList as a datasource
simpleListView.itemDataSource = sortedList.dataSource;

Build and run the project and you will see a result similar to the following screenshot:

The filtering is done by calling the createFiltered method that creates a live filtered
projection over this list. The filtered projection will react to changes in the list and may
also change accordingly. This method takes one parameter of type function, and what
this parameter basically does is execute a callback method on each element in the list.
For example, we want to apply a filter to bindingList that will check if the from_
user_name string has the character 'a' as the second character of its value and return
only the matching items in the list. The createFiltered parameter of type function
will check for each string in the list; if the condition returns true, include that string in
the filtered list. To use the filter, refer to the following code snippet:

//to recall this was the bindinglist variable we had
var bindingList = new WinJS.Binding.List(json.results);//create a
sorted list instance from that bindingList

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 5

[83]

var filterdList = bindingList.createFiltered(function (filter) {
return filter.from_user_name.toString().charAt(1) == 'a';
});
simpleListView.itemDataSource = filteredList.dataSource;

Run the project and you will see that the list has been filtered accordingly (you can
change the filter criteria as you please in order to better see the effect of the filter).
The result will be something similar to the following screenshot:

Summary
In this chapter we have covered the basics for handling data in a JavaScript app.
We learned how to get the data from a local object and how to fetch data from the
web via a web service and handle the data that is coming back with the response.

We then covered how to display the data we fetched and bind it to a ListView
control. Finally, we saw how we can add sorting and filtering to this data before
we display it on the app.

In the next chapter we will learn how to make the app responsive to allow the
layout to change when the view state changes, so that the content always appears
to the user in a good format.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Making the App Responsive
In this chapter, we will learn about the different view states that the app can exist
in and how we can make the app adapt to these view states and to a variety of
form factors and displays sizes. Windows 8 targets different platforms and runs
on various devices with dissimilar sizes, from large HD monitors and laptops to
10-inch widescreen tablets and 4-inch-wide smartphones. So, in order to abide by
the Windows 8 UX guidelines, the app should maintain the same look and feel and
sustain its functionality when users view it on these different devices, they flip their
screen to toggle between landscape and portrait orientation, they zoom in or out,
or the app switches between the various view states. The app should provide fluid
and flexible layouts in a way that allows its UI to reflow gracefully and cater for
these changes.

Throughout this chapter, we will learn how to make the app responsive so that it
handles screen sizes and view state changes and responds to zooming in and out.
We will first introduce the concept of app view states and then we will learn how
to handle changes in view states with CSS and JavaScript. Lastly, we will learn
about the concept of Semantic Zoom in apps.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Making the App Responsive

[86]

Introducing app view states
The view states represent the ways that the user can choose to display the app.
There are four possible application view states; they are listed here with the
description of each:

•	 Full screen landscape view: With this, the app fills the entire screen,
and this is the default state for all Windows Store apps.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 6

[87]

•	 Full screen portrait: With this, the app fills the entire screen again, but this
time in a portrait orientation.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Making the App Responsive

[88]

•	 Snapped view: With this, the app fills a narrow region of the entire screen
(320px) either to the left or right; thus, the screen will display two apps
simultaneously.

•	 Filled view: With this, the app runs side by side with a snapped app and it
fills the region of the screen that is not occupied by that app; thus, the screen
will display two apps simultaneously again.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 6

[89]

If we look at the preceding image, we will see two apps running side by side; one in
snapped view and the other in filled view. The user has snapped an app (Bing News)
by dragging another app (the weather app) or window onto the screen. The second
app will become the currently running app and will have the filled view state while the
once fullscreen app will be snapped to the side. Now the user can toggle the view state
of these apps between snapped and filled by pressing the Windows key and period (.).

Snapping an app resizes it to 320 pixels wide, which allows it to share the screen
with another app, thus enabling two apps to be visible at the same time so the user
can multitask.

You can have snapped and filled views only on displays
with a horizontal resolution greater than or equal to 1366
relative pixels. This is because the snapped view will occupy
320 pixels on either side of the screen. So, the remaining
1046 pixels will be allocated to the splitter (22 pixels) and
the app in filled view, which must always have a horizontal
resolution of 1024 relative pixels or greater. Thus, the size of
1366 x 768 is considered a reference point.

The app can always be snapped either manually, when the user snaps it to either
side, or automatically, in response to another app being dragged into the full screen.
Thus, you cannot prevent an app from getting into the snap view. Since users can
snap every app, if you don't design your app for the snapped view state, the system
will resize your app anyway and might crop the content and mess up the way the
app looks.

Rotation, on the other hand, is not obligatory, and you can choose to make your app
support it or not. So, if your app does not support portrait orientation and the user
flips the device, nothing will happen to your app; that is, it will not rotate with the new
device orientation. Having said this, of course, it is highly recommended to support
rotation in order to have a satisfied user, who is, after all, the target of your app.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Making the App Responsive

[90]

When you click and open the package_appmanifest file, you will be able to set up
options for the application UI; one of these options is Supported rotations, which
is an optional setting that indicates the app's orientation preference and has four
values: Landscape, Portrait, Landscape-flipped, and Portrait-flipped, as shown
in the following screenshot:

Handling a view state
There are two ways to cater for a snapped view: by using the CSS3 media queries or
by using the JavaScript layout change events, and sometimes both. We use media
queries for changes in layout that can be tackled using CSS-like element sizes, element
display (inline, block), and element visibility. By using CSS media queries, it becomes
very easy to define different styles that will be applied depending on the view state
of the app. You can use a separate media query for each view state you have, or you
can apply the same set of styles to multiple view states by combining more than one
media query. The following code shows the syntax for a media query that matches
the different view states; the first one matches the snapped view state and the second
matches a combination of view states.

@media screen and (-ms-view-state: snapped) {
}
@media screen and (-ms-view-state: fullscreen-landscape),
 screen and (-ms-view-state: fullscreen-portrait),
 screen and (-ms-view-state: filled) {
}

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 6

[91]

So, if we have a set of classes and other selectors specifying the styles in the UI,
we can change these styles with every media query. For example, the following
code shows the wrapper div of the page defined as CSS Grid with two columns;
it is changed to a single column layout once inside the media query for the view
state snapped:

.appGrid {
display: -ms-grid;
-ms-grid-columns: 120px 1fr; /* 2 columns */
-ms-grid-rows: 120px 1fr;
width: 100vw;
height: 100vh;
margin-left: 120px;
}

@media (-ms-view-state: snapped) {
 /*styles that will be applied when in snapped view state*/
 .appGrid {
 display: -ms-grid;
 -ms-grid-columns: 1fr; /* 1 column fills the available space */
 -ms-grid-rows: 120px 1fr;
 width: 100%; height: 100%;
 margin-left: 20px; /* margin decreased from 120 to 20 px*/
}
}

The units vw and vh, set for the width and height values shown in the preceding
code, represent view width and view height respectively, which specify the full
width and height resolution that the app is occupying.

The previous code sample shows the use of CSS Grid, which is one of the most
convenient ways to achieve a fluid and adaptable UI layout that can handle the change
in view states. This is because the Grid automatically expands to distribute the content
and fill the available space and it allows you to dictate the position of elements inside
it purely by CSS, independent of the order in which they are specified in the HTML
markup. This makes it easy to specify the different arrangements for the elements on
different screen sizes or in different view states.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Making the App Responsive

[92]

The second approach to handling change in window sizes is to use JavaScript events,
which are the best option when you tackle changes in behavior and properties that
cannot be specified with CSS styles, such as the scroll direction of the WinJS ListView
control and the control changes (such as changing from a horizontal list of buttons
to a drop-down list control). If we take the case of a ListView control, it uses the grid
mode to display the items vertically and horizontally in a way that fills the container
element and the available space when the app is in landscape, is in portrait, or is filled.
But when the app is snapped, the ListView control should rearrange and display the
items vertically only to avoid horizontal scrolling using the list mode. The list and
grid mode cannot be specified in the CSS because they are defined in the data-win-
options attribute as follows:

data-win-options="{ layout: {type: WinJS.UI.GridLayout} }

Here is where the JavaScript events come in, allowing us to create view-specific
layouts by registering an event listener for the window resize event that queries
the ViewManagement.ApplicationView.value property, which is provided by
the WinRT to directly query the current view state of an app. The following sample
shows the code of an event listener for the window resize event:

window.addEventListener("resize", function (e) {
 var viewState = Windows.UI.ViewManagement.ApplicationView.value;
 var snapped = Windows.UI.ViewManagement.ApplicationViewState.
snapped;

 if (viewState === snapped) {
 that.listView.layout = new WinJS.UI.ListLayout();
}
 else if (viewState!== snapped)
 {
 that.listView.layout = new WinJS.UI.GridLayout();
}
});

ListView and Grid are flexible controls that provide maximum
control over the UI with minimum development efforts, as
both support the built-in flexible layouts and can arrange and
distribute their content automatically. You should try to use
them wherever possible.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 6

[93]

Understanding semantic zoom
As per the UX guidelines for the Windows Store app, the content flows horizontally
and the user will, either by mouse or by touch, scroll the content from left to right or
right to left (in some languages). But imagine a scenario where you have content that
features a long list of data, such as in the case of an address book or maybe a list of
different news articles, where scrolling to navigate the content becomes cumbersome
for the user. In the case of an address book app where the contacts are organized
alphabetically, the user has to scroll all the way to find a contact whose name starts
with the letter z; that is, at the end of list, while the user could zoom out to the view
level that only lists the letters and find a specific contact that falls under that letter.

The same goes for a catalog or a news app that organizes items/articles by category;
instead of long scrolling to reach the desired content, which falls under a category
that happens to be at the end of the list, the user can zoom out to the category level.
The following screenshots show a "zoomed-out" view of the People app and Bing
News app on Windows 8, respectively:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Making the App Responsive

[94]

The semantic zoom view of the Bing News app in Windows 8 is shown as follows:

The semantic zoom interaction is touch-optimized, so it can be
performed with the pinch and stretch gestures. Also, the user
can zoom either by scrolling the mouse scroll wheel or using
the keyboard by holding the Ctrl key down and pressing the
plus (+) or minus (-) key.

This technique is called semantic zoom and is used by Windows Store apps for
presenting—in a single view—two levels of detail for large sets of related content
while providing quicker navigation. This technique uses two zoom levels of the
same content for organizing the data: a "zoomed-in" detailed view, which is the
default mode of display for the apps, and a "zoomed-out" view, which displays
the items in groups based on some metadata.

In order to provide the app with the semantic zoom feature, we will need to define
these two modes of semantic levels. Luckily, WinJS.UI offers us the best way to do
so using the WinJS.UI.SemanticZoom object, which will in turn render a semantic
zoom control that enables the user to zoom between two different views of the same
content. The zoom control uses two child controls to render these two different
views; the first child control will supply the zoomed-out view and the other will
provide the zoomed-in view or vice versa. It is quite easy to declare a semantic
zoom control, either in the markup or in script as shown in the following code:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 6

[95]

In HTML:

<div data-win-control="WinJS.UI.SemanticZoom">
 <!-- zoomed-in view -->
 <!-- zoomed-out view -->
</div>

In JavaScript:

var object = new WinJS.UI.SemanticZoom(element, options);

After we have defined the SemanticZoom control, let's add to it the two child controls
that will hold the two views.

Bear in mind that the child controls should support the semantic zoom functionality
by implementing the IZoomableView interface, which in turn allows the control to be
exposed as either a zoomed-in or a zoomed-out view of the SemanticZoom control.
Currently, the only control provided by Windows Library for JavaScript that supports
this functionality is the ListView control. Hence, the two child controls will be two
instances of a ListView control, as shown in the following code:

<!-- zoomed-in view -->
 <div data-win-control="WinJS.UI.SemanticZoom">
 <div id="zoomedInView" data-win-control="WinJS.UI.ListView" >
 </div>

<!-- zoomed-out view -->
 <div id="zoomedOutView" data-win-control="WinJS.UI.ListView">
 </div>
 </div>

Now we need some data to display in these two views. Do you recall the data array
we created back in Chapter 4, Developing Apps with JavaScript, when we were getting
introduced to the ListView control? Well, let's use it again and add more names to it.
Feel free to add as many as you like; here it is again for reference:

var dataArray = [
 { name: "John Doe", country: "England", age: "28" },
 { name: "Jane Doe", country: "England", age: "20" },
 { name: "Mark Wallace", country: "USA", age: "34" },
 { name: "Rami Rain", country: "Lebanon", age: "18" },
 { name: "Ryan Air", country: "England", age: "18" },
 { name: "Foster Mane", country: "England", age: "18" },
 { name: "Doe Jane", country: "England", age: "18" },

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Making the App Responsive

[96]

 { name: "Bow Arrow", country: "England", age: "18" },
 { name: "Amy Sparrow", country: "Italy", age: "18" },
 { name: "Jean Trops", country: "France", age: "56" }

];
//create a list object from the array
var bindingList = new WinJS.Binding.List(dataArray);

Now we need to create a version of this data source that contains the
grouping information. We can do so using the createGrouped method,
which allows us to create a grouped version of the list. We learned about
similar methods, createdFiltered and createSorted, in the previous
chapter. The createGrouped method creates a grouped projection over a
list and takes the following three function parameters:

•	 getGroupKey: This takes an item in the list and returns the group key
that this item belongs to

•	 getGroupData: This takes an item in the list and returns the data object
that represents the group that this item belongs to

•	 compareGroups: This compares two groups and returns a negative value
if the first group has a lesser value than the second group, zero if the two
groups have the same value, and a positive value if the first group has a
greater value than the second group

The following code will create a grouped version of our bindingList object, which
uses the first letter of each item's name to define the metadata:

// Sort the group
function compareGroups(leftKey, rightKey) {
return leftKey.charCodeAt(0) - rightKey.charCodeAt(0);
}

// Get the group key that an item belongs to.
function getGroupKey(dataItem) {
return dataItem.name.toUpperCase().charAt(0);
}

// Get a title for a group
function getGroupData(dataItem) {
return {
 title: dataItem.name.toUpperCase().charAt(0);
};
}

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 6

[97]

// Create the groups for the ListView from the item data and the
grouping functions
 var groupedItemsList = bindingList.createGrouped(getGroupKey,
getGroupData, compareGroups);

In order to bind the grouped data to the zoomed-out ListView control, we set its
itemDataSource property to groupedItemsList.groups.dataSource, which
contains the group information, and we set itemDataSource for the zoomed-in
ListView control to groupedItemsList.dataSource, which contains the items
to display, as follows:

var zoomedInView = document.getElementById("zoomedOutView").
winControl;
var zoomedOutView = document.getElementById("zoomedOutView").
winControl;

zoomedInView.itemDataSource = groupedItemsList.dataSource;

zoomedOutView.itemDataSource = groupedItemsList.groups.dataSource;

With this knowledge in hand, you can create templates for both views as we learned
in Chapter 4, Developing Apps with JavaScript, to better present the data.

Summary
In this chapter we got introduced to the different view states that the user can choose
to display apps. Then we learned about the techniques and controls that allow us to
cater to the changes in these view states, either by CSS and media queries or using
JavaScript event handlers that detect the change in window size.

Finally, we learned about semantic zoom and how easy it is to incorporate this feature
into an app.

In the following chapter we will learn about live tiles, how to add tiles and badges to
the app logo, and make the tiles alive and send notifications from the app to the user.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Making the App Live with
Tiles and Notifications

The Start screen of Windows 8 is flashing with tiles and these tiles are more than
just big icons associated with a specific app. In this chapter we will learn about the
concept of app tiles, tile types, and the use of each. Also, we will get to see how
to define these tiles for the app. Then we will get introduced to notifications and
different types of notification methods, and we'll write a sample code that creates
and implements a simple notification for the app.

Introducing tiles, badges, and
notifications
A unique characteristic of Windows 8 apps is the concept of tiles. Moreover, the
tiles are what make a Windows 8 app distinguishable. The apps fill and decorate
the Start screen with an extravaganza of colors, logos, and information. The tiles
are the graphical representation of the app on the Start screen. Moreover, an app
tile is the launching point of the app; clicking on a tile will start the application
similar to what we have with a Windows application shortcut on the desktop.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Making the App Live with Tiles and Notifications

[100]

The following is a screenshot of the Start screen from a clean installation that shows
a couple of app tiles:

Every installed app has a default tile that is added to the Start screen right after
installation. This default tile has a default logo image that represents the app logo
or any other branding to identify the app. By default, a static content appears on the
tile, which contains text specifying the name of the app and an image representing
the logo. The previous screenshot shows an example of the basic app tiles on a
Windows 8 Start screen. You can notice in the previous screenshot that there are two
sizes for the tiles: a square (150x150) px and a rectangle (310x150) px. In Windows
8 naming convention, these two sizes are square and wide. As you can see, both
sizes display text and images and a notification badge to show some sort of status;
we will get to see what a badge is in a bit. All apps support a square tile by default;
supporting a wide tile is optional. If an app does not provide a wide logo image for
the default tile, users will not be able to make the app tile larger from the Start screen
menu. Also, if the app includes a wide logo image, Windows 8 will show the tile in
its wide format by default.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 7

[101]

Users can personalize their Start screen by switching between a wide and a square tile
as long as the app tile contains both versions. If an app does not contain a wide logo,
users will not be able to make the tile larger. Users can right-click on the app and the
Start screen app bar will appear. From there, users can click on the Larger option to
change the size of the tile. The following screenshot shows how a user changes the
tile of the Store app from square to wide.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Making the App Live with Tiles and Notifications

[102]

Windows 8 displays the default tile image as long as it has no notifications to display,
and it will revert to the default image when the notification expires or when a user
turns off live notifications. Both image sizes and other images such as Small Logo,
which is displayed in the search results next to the app name, and Store Logo, which is
displayed on the Windows Store, are included in the app package and are specified in
the app manifest under the Tile Images and Logos settings in the Application UI pane
of the Manifest Editor. On the Manifest Editor, we can specify a background color for
the tile, the color of the text that will appear on the tile, and a short name for the app;
more importantly, we can browse for (and choose images for) the different tile sizes,
as shown in the following screenshot:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 7

[103]

If you check on your Start screen for the test app we created in the previous chapters,
you will see that the app tile displays the image specified in the 150x150 px default
logo; it fills the square tile and cannot be made larger. Try choosing a Wide logo to run
the app, and then make the app tile larger to view the changes. The content of a tile is
defined in XML, based on a set of Windows-provided templates, in order to maintain
the Windows 8 look and feel. The tile's contents can be defined within these templates
by providing the corresponding text or images, or both. The tile also displays either a
logo or a short name.

In addition to the default tiles, there are the secondary tiles that enable a user to show
specific content from the app on the Start screen. The secondary tile is created via the
Pin to Start option available in the app bar, whereby a user chooses to pin a particular
location or content from the app to the Start screen. When the app is launched from the
secondary tile, the user is directed to a specific location inside that app. For example,
we can pin a contact from the People app, and the secondary tile will personalize the
Start screen with the updated info about that contact; alternatively, maybe we can pin
the Weather of a specific city. Secondary tiles allow the users to personalize their Start
screen info that is important to them. The following screenshot shows two tiles for
the weather app; on the left is the default tile showing the Weather from the current
location and on the right is the secondary tile showing a pinned content of the weather
in the city of London:

The app tile can convey status information related to the app when it is not running,
using a notification badge that expresses a summary or status information that can
be numeric between 1 and 99 (values greater than 99 will be displayed as 99+) or
it can be a set of Windows-provided image symbols known as glyphs. The badges
appear on the lower-right corner of the tile and can be featured on both square and
wide tiles.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Making the App Live with Tiles and Notifications

[104]

Another UI-related concept of the app is the toast notification; this is a pop-up
notification that shows up on the top-right corner of the screen. Toast notifications
enable the app to send information to the user when the app is not running on the
screen, even if the user is using another app, or when on the desktop and not the
Windows 8 Start screen.

It is important to note that app tiles shouldn't be used as an
advertisement surface. Using the tile to show ads is not allowed
in most cases as per the terms of the Windows Store app.

Working with live tiles
The app tile is a core part of your app; most probably it's the part that is most
frequently seen. That is why you should utilize this tile to draw the users' attention
and get them back into the app by implementing a live tile. A live tile is one of the
ideal ways to attract users to your app by displaying important info that shows the
best of what's happening inside the app. For example, the People app in Windows 8
has a live tile whereby it changes the pictures of the contacts at specific time intervals.

Unlike a static tile display, for which the default content is generally a full tile logo
image and text that indicates the app name, the live tile can update the default tile
to show new content. Live tiles can be used to keep the user updated about their
contacts, to show event information, or show latest news. Also, a live tile can show
a summary of updates in the app, such as the number of unread mails, thus giving
users a motive to launch the app.

Sending notifications
Tiles, secondary tiles, lock screen tiles, and toast can be updated through several
types of notifications. These notifications can be generated via a local API call
or from a call to some service running on the cloud. Additionally, there are four
different notification delivery methods that can send tile and badge updates
and toast notifications. These methods include the following:

•	 Local: It sends notifications while the app is running either on the screen
or in the background to update an app tile or badge, or pops up a toast
notification.

•	 Scheduled: It sends a notification at a certain time that is known in
advance; for example, a reminder for an upcoming appointment.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 7

[105]

•	 Periodic: It sends notifications in a periodic manner by polling for new content
from a cloud server at fixed time intervals; for example, updating the weather
every 12 hours. Periodic notifications work with tiles and badges but are not
suitable for toasts.

•	 Push: It sends notifications from a cloud server directly to the screen even if
the app is not running. Push notifications are ideal for situations that include
real-time data such as social network updates or time-sensitive information
such as instant message or breaking news. This notification method can be
used with tiles, badges, and toast.

By default, local tile notifications do not expire but can be and ideally should be
given an expiration time; push, periodic, and scheduled notifications, however,
expire after three days from the time when they were provided. By specifying
an expiration time, the app can remove the notification content from the tile if
it is still being displayed when it hits the expiry time.

Choosing a notification method is determined primarily by the information that
you want to deliver and the nature and content of the app.

Bear in mind that a user can turn tile notifications off
and on at any time, so be wary of overwhelming the
user with unnecessary toast notifications.

In order to implement the notifications feature and allow the app to transmit
toast notifications, we must declare it as toast capable in the manifest file. Once
the app has been declared toast capable, it will be added to the list of apps in the
Notifications: section of the PC settings. The following screenshot shows where
to change the Toast capable setting:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Making the App Live with Tiles and Notifications

[106]

Now let's write some code to create a simple local toast notification. We will need to
use the Windows.UI.Notifications namespace very frequently; so, for the purpose
of simplicity let's declare a namespace variable as follows:

var notifications = Windows.UI.Notifications;

Next, we need to provide a ToastTemplateType by choosing from one of the
Windows-provided templates; these templates ensure that an app will maintain the
expected Windows 8 look and feel in the toast notifications. There are text templates
such as: toastText01, toastText02, toastText03, toastText04. The templates for image
and text are: toastImageAndText01, toastImageAndText02, toastImageAndText03,
toastImageAndText04.

WinJS provides IntelliSense for these templates, which will be listed when we call
the ToastTemplateType enumeration on the notifications variable, as shown in the
following screenshot:

For this example, we'll choose the toastText01 that contains only a single text string
that wraps across a maximum of three lines. If the text exceeds three lines, it will be
truncated. We'll then get the template content that is an XML document as shown in
the following code:

var template = notifications.ToastTemplateType.toastText01;
var templateXML =
notifications.ToastNotificationManager.getTemplateContent(template
);

The templateContent variable will contain the following XML skeleton:

<toast>
 <visual>
 <binding template="toastText01">

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 7

[107]

 <text id="1"> </text>
 </binding>
 </visual>
</toast>

The next thing we need to do is fill the content in this XML template, so we need to
retrieve the element with a tag name text, as shown in the following code:

var toastTextElements =
 templateContent.getElementsByTagName("text");
toastTextElements[0].appendChild(templateXML.createTextNode("This
 is a new toast notification"));

Then we create the toast notification based on the XML content we've just specified,
as follows:

var newToast = new notifications.ToastNotification(templateXML);

Lastly, we will create a toastNotifier variable which will send newToast, the toast
notification we defined to the screen, as shown in the following code:

var toastNotifier = notifications.ToastNotificationManager.
createToastNotifier();
toastNotifier.show(newToast);

Write the code to be executed in the then() function called on the WinJS.
UI.processAll() method; thus the toast notification will appear as soon as the
app starts. If we run the app now, the following toast notification will pop up in
the top-right corner of the screen:

Note that the background color applied to the toast
notification is the one declared in the app manifest
for the app's tile.

The previous code allowed us to implement a minimal toast notification; you can
experiment with the rest of the toast templates and compare the results.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Making the App Live with Tiles and Notifications

[108]

Summary
In this chapter we got introduced to the concept of tiles, badges, and notifications at
the UI level, and we learned the difference between each of them and where we can
use them.

We also learned how to send notifications and wrote a sample code which implements
sending a very simple toast notification to the screen.

In the next chapter, we will learn how to use the Windows Live Services to enable
user authentication and allow the users to sign in using their e-mail IDs.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Signing Users in
A Windows Store app can be personalized for users who sign in to the app; thus, it is
fairly important to make the authentication process very simple. Windows 8 enables
users to sign in to their devices by using a Microsoft account, hence making it easier for
developers to provide a single sign-on experience for users on their apps. Furthermore,
Windows 8 offers a Software Development Kit (SDK) and a set of APIs to allow
Windows Store apps to enable single sign on with Microsoft accounts, and to integrate
with info in Microsoft SkyDrive, Outlook.com, and Windows Live Messenger. In this
chapter we will learn about the Live Connect API and how to integrate the apps with
this API to sign in users and retrieve user profile information. We will learn how to
start integrating the apps with Live Connect, and show some code that introduces a
few basic things that the Live Connect APIs can do.

Introducing Live Connect
There are many scenarios when an app will need to authenticate users and access
their profile info, from the simple purpose of displaying a welcome message with
a user's name to the extent of accessing their profile info and giving the user a
personalized experience. Moreover, you can build an app that offers great features
by integrating with products and services such as Microsoft SkyDrive that allows
working with documents and media and accessing files on the cloud or Outlook
to work with contacts and calendars. The scenarios where your app will need to
integrate authentication with Microsoft accounts can be summed up as follows:

•	 The app requires the user to be signed in to work, for example, a contacts app
•	 The app can work without needing the user to sign in but delivers a more

personalized experience for those who do; for example, a weather or news app
•	 The app contains certain features that integrate with SkyDrive or Hotmail,

and thus require a Microsoft account sign in

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Signing Users in

[110]

The authentication process and the integration with Microsoft cloud services
such as Microsoft SkyDrive and Outlook are implemented using Live Connect.
Live Connect is a set of APIs that allow integrating the app with these compatible
services. These APIs are provided by the Live SDK that is one of the Microsoft
Software Development kits for developing apps. The Live Connect APIs utilize
an open standard that allows you to focus on coding to implement features, rather
than spending time learning new concepts when all you want to do is implement
the features introduced by this new concept. For example, you can use the Open
Authentication (OAuth) standard to integrate with the authentications services
of Facebook and other social networking APIs without having to learn the internal
workings of the authentication process at the level of those social networking APIs;
more importantly, you can use the programming language you know to do the calls.
The open standards used by Live Connect include the following:

•	 OAuth 2.0: It is the latest version of the OAuth protocol that is an open
standard for authenticating users' credentials. Social networking APIs,
including Live Connect, have adopted OAuth as its authentication standard.
OAuth basically enables users to be authenticated using the Live Connect
authorization web services without having to share their confidential sign-in
credentials with the apps.

•	 Representational State Transfer (REST): It is an architectural style popular
in web services implementation. In Windows Store development, REST
allows us to easily request users' info through Live Connect APIs. This REST
implementation supports standard HTTP methods such as GET, PUT, POST,
and DELETE.

•	 JSON: It stands for JavaScript Object Notation, a lightweight data-interchange
format used for representing info in web services. Live Connect exchanges user
info in JSON format. For instance, when the function requests a user's profile
information, that info is returned in a response object that contains first_
name, last_name, and so on.

In Windows 8, users can sign in to their devices by using their Microsoft accounts
(Hotmail, Live, and Outlook); hence, the app can take advantage of this functionality
to provide a single sign-on experience. For example, the main apps of Windows 8
such as People, Mail, and Messaging, and also Microsoft websites such as Outlook
and Bing can take advantage of the single sign-on, so the users don't need to sign in
to these apps and websites after they are signed into the PC; the process will be done
on their behalf. The apps we develop can do the same by implementing the features
in the Live Connect APIs so that a user can be directly authenticated in our apps if
already signed in to the device.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 8

[111]

Before we can start using Live Connect features, there are two prerequisites:

•	 Register the app with the Windows Store
•	 Configure the Live Connect settings for the Windows Store apps in your

Windows Store Dashboard

First we need to register the app on the Store in your Windows Store Dashboard,
which can be accessed via the following link:

https://appdev.microsoft.com/StorePortals/en-us/Home/Index

Sign in to the store dashboard; you will need Microsoft account credentials for that,
and you will see the following screen:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Signing Users in

[112]

This is the main page where your entire app will be listed. Also, this is the screen
that the first-time users will see. In order for the app to start using the Live Connect
APIs, it must be registered and its settings configured accordingly. Additionally, for
a Windows Store app to use Live Connect, it will need to have a package identity that
is a combination of a package name and publisher and that will uniquely identify the
app. To get the package identity, we need to submit the app; this is basically reserving
a name for your app, adding its description, and submitting it for certification. At this
level, we don't need to submit the app to the Windows Store for certification; we will
just need to enter a name for it in the Windows Store developer account. In order to do
so, we'll start by clicking on the Submit an app link, which is the first link in the menu
to the left under Dashboard, as you may have noticed in the previous screenshot. You
will be directed to the Submit an app page, as shown in the following screenshot:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 8

[113]

Click on App name to give the app a unique name that will be reserved for this app
only; no other app can use it. The reservations will last for one year if the app was
not fully submitted to the Store. Make sure that you have the rights to use the name
because the app will be listed in the Windows Store under this name. Note that the
app name should be the same as the one entered for the DisplayName field in the app
manifest file. To proceed, enter a value in the text box provided and click on Reserve
app name; the name is now reserved; click on Save to return to the app summary page.
Now the app will be listed on the dashboard in a tilelike box containing Delete and
Edit links. The following screenshot shows a test app created to serve as an example:

Next we need to configure the Live Services for the app. To do so, follow the
given steps:

1.	 If you are in the dashboard page, locate your app and click on Edit.
You will be directed to the app summary page.

2.	 Click on Advanced features.
3.	 Click on Push Notifications and Live Connect services info.
4.	 You will be directed to the page Push notifications and Live Connect services

info page and will need to follow the steps under the heading If your app
uses Live Connect services, review. It includes the following steps:

°° Identifying your app

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Signing Users in

[114]

This includes defining the correct identity values in the app's manifest.
These values have been created when we reserved an app name. We can
set these values in two ways:

1.	 We could set the app's identity values by using the Store menu in
Visual Studio 2012 for Windows 8. Within an open project, in the
top menu, click on Project; then select Store from the menu that
appears, navigate to the submenu, and click on Associate App
with the Store. Follow and finish the wizard, the process is
illustrated in the following screenshot:

In the first step of the wizard, marked by number 2 in the previous
screenshot, you will be prompted to sign in using your Microsoft
account.

2.	 Alternatively, we can set the app's package identity manually in the
app manifest file. Open your app's AppManifest.xml file in a text
editor and set these attributes of the <identity> element using the
Name and Publisher values. The Windows Store created these values
when you reserved your app's name, and you can retrieve it from the
Windows Store Dashboard. The following code shows the syntax of
the XML setting node that contains these values:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 8

[115]

<Identity Name="19474XXX.BookTestApp" Publisher="CN=F0476225-496D-
4EDF-946E-46F6247D5B9A"" />

°° Authenticating your service
This step involves retrieving the client secret values. Live Connect services
use the client secret to authenticate the communications from your server
in order to protect your app's security. The following client secret will be
displayed:
zqMKo4G0t3ICZe1h06ofrKYZ1/hVuZXn.
Note that you can always come back to the page and create a new client
secret if there is a need.

°° Representing your app to Live Connect users
This is the last step to configure the Live Connect services info
and involves specifying the settings for the consent dialog that Live
Connect services use to prompt the user for permission to access and
interact with their data. In this step, you can provide them with the
links to your own terms of service and privacy policy, and upload
your app logo to be displayed in the consent dialog.

That concludes the registration and configuration process of the app on the
Windows Store. Now to the coding part; we'll see how to enable a basic sign-in
and authentication functionality.

Signing in users to the app
To start coding the sign-in functionality, we need to reference the Live Connect
APIs in our app solution; in order to do so, we should first download and install
Live SDK for Windows if you haven't already installed it. It can be found and
downloaded from the Live Connect Developer Center via the following link:

http://msdn.microsoft.com/en-us/live/ff621310.aspx

On that page, you will also find download links to Live SDK versions that support
Android and iOS. Alternatively, you can find and install Live SDK in Visual Studio
directly to your open solution using the NuGet Package Manager.

To do so, open the app solution in Visual Studio, right-click on the solution from the
Solution Explorer, and click on Manage NuGet Packages…

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Signing Users in

[116]

A dialog will appear, type livesdk in the search textbox provided at the top right
of the dialog; the package manager will search online for all the relevant matches
that include livesdk. From the search results, locate Live SDK and click on Install.
This will install the Live SDK package and include it in the references.

The following screenshot shows the Manage NuGet Packages dialog on the screen:

Next, we add a reference to the Live Connect APIs in our project. For doing so,
follow the given steps:

1.	 From the Solution Explorer, right-click on References and then
click on Add Reference.

2.	 Click on Windows | Extension SDKs | Live SDK.
3.	 Click on Add and then click on Close.

Once we add the reference to the Live SDK, the JavaScript file wl.js will be added to
the solution. For convenience, I recommend you to copy and paste this file to your js
folder. Then we add the <script> element that points to the newly added wl.js, so
we can make use of the Microsoft IntelliSense for this API in default.html pages,
as shown in the following code:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 8

[117]

<script src="///LiveSDKHTML/js/wl.js"></script>

Notice that the file path set for the src attribute contains ///; the reason we used
3 backslashes (/) was because there are three levels in the directory hierarchy to
reach the wl.js file that is located in the directory js under LiveSDKHTML under
References.

Adding the reference to this script file will enable Microsoft IntelliSense in the
HTML file it is being referenced in.

Moreover, if you want to enable the intelliSense at the level of JavaScript, add the
reference to the top of the JavaScript file you are using to call methods of this API,
as shown in the following code:

/// <reference path="///LiveSDKHTML/js/wl.js" />

It is recommended you write the code that uses the wl.js
in a separate JavaScript file. This will make it easier to make
modifications and debug the app.

Let's add a button that when clicked, will prompt the user to sign in and respond to
the consent dialog.

The following markup will add a button with ID signIn and a div with ID log.
This div will be used to display content on the screen that will give us an idea of
what is happening when we click on the Sign in button:

<div id="liveSDK">
 <h1>Windows Live Connect</h1>
<div>
<div>
 The authentication in this section uses the Windows Live connect.

 Sign in to your Microsoft account by clicking on the below button:
</div>
<button id="signIn">Sign in</button>

<div id="log">
</div>
</div>
</div>

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Signing Users in

[118]

First we initialize the Live Connect APIs by calling the WL.init method (the app
must call this function on every page before making other function calls in the
library), and then subscribe to the auth.login event on the page load, as shown
in the following code:

WL.init();
WL.Event.subscribe("auth.login", function () {
 if (WL.getSession()){
 log("You are now signed in!");
 }
});

On the callback function of the auth.login event, we check the status using the
WL.getSession() method that gets the current session object; if it exists, the user
is signed in.

Next, we will add the sign-in functionality on the click of the button and the
log function:

document.querySelector("#signIn").onclick = function (e) {
 if (WL.getSession()){
 log("You are already signed in!");
}
 else {
 WL.login({ scope: "wl.signin" });
 }
};
//log what is happening
function log(info) {
 var message = document.createTextNode(info);
 var logDiv = document.querySelector("#log");
 logDiv.appendChild(message);
 logDiv.appendChild(document.createElement("br"));
}

On the click of the sign in button, we first check if there is a session and whether the
user is signed in already. If there is no session, we attempt to log in the user by calling
the WL.login method; this method takes the parameter scope: "wl.signin". The
scope values such as "wl.signin" or "wl.skydrive" are used to indicate what parts
of the user data the app will be able to access if the user consents.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 8

[119]

In the previous lines of code, we defined a single scope using this format: scope:
"wl.signin", which is a string parameter. We can define multiple scopes as well,
but with a slightly different format, using an array of string values, as shown in
the following line of code:

scope: ["wl.signin", "wl.skydrive", "wl.basics"]

The scope can also be set when initializing the library by passing it as an optional
parameter to the WL.init method. Moreover, the scope values entered in the login
method will override and extend the list of scopes defined in the init method.
Also, the scope value of WL.init is used when there was no scope provided by
the login method.

The WL.login function should be called only in response to a user action, such as
clicking a button as in our example, because this function can result in launching
the consent page prompt.

The log function only takes text, and simply appends it to the contents of the div
with the IDlog so that we can get status info of what has happened.

Run the app now. You will see the following screenshot prompting you to log in;
the consent dialog will follow:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Signing Users in

[120]

Follow the steps that appear in the previous screenshot. At the end, the app will
display the message: You are signed in!

Getting user info
The login function returns a promise object that allows us to properly react in case
of a success, that is, a successful sign-in by the user. Our goal is to get the user's
profile information. As such we need to modify the previously shown WL.login
call and request additional scopes such as wl.basic, wl.birthday, and wl.emails,
which will allow us to retrieve basic profile information such as first and last names
and also get the user's birthday and e-mails. In the success callback of the login
method, we then execute a call to the WL.api function, which returns our desired
user profile info. Technically, the WL.api function makes a call to the Live Connect
Representational State Transfer (REST) API. The syntax to the WL.api call is shown
in the following code:

WL.api({
 path: "me" ,
 method: "GET"
});

In the previous code sample, we passed the me shortcut to request info about the
signed-in user. The path parameter specifies the path to the REST API object, in this
case the object me, which contains properties such as first_name and last_name;
WL.api returns a promise object so we can call then() on it, and in the success
callback we will request the first and last names of the user, which are provided
by the scope "wl.basic". The code will be as follows:

WL.api({
 path: "me" , method: "GET"
 }).then(
 function (response) {
 log("First Name: " + response.first_name);
 log("Last Name: " + response.last_name);
 log("Email: " + response.emails.preferred);
 log("Birthday: " + response.birth_day + "/" +
 response.birth_month);
}

Add the previous code to the then method called on WL.login in the sign-in button
click handler, and the complete code will be as follows:

document.querySelector("#signIn").onclick = function (e) {
 WL.login({

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 8

[121]

 scope: ["wl.signin", "wl.basic", "wl.birthday", "wl.emails"]
 }).then(
 function (response) {
 WL.api({
 path: "me", method: "GET"
 }).then(
 function (response) {
 log("First Name: " + response.first_name);
 log("Last Name: " + response.last_name);
 log("Emails: " + response.emails.preferred);
 log("Birthday: " + response.birth_day + "/" +
 response.birth_month);
 }
);
 }
);
};

Run the app now and you will notice that the consent dialog will change
requesting to access to info about your birthday and e-mail address, as shown
in the following screenshot:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Signing Users in

[122]

After you approve the consent prompt, click on the Sign in button and the app will
display the requested info, as shown in the following screenshot:

To abide by the guidelines set by Microsoft for the Windows
Store apps, you should not display the Microsoft account
sign-in or sign-out options anywhere on the app other than
the Settings Flyout control or part of a task. The users expect
account management options to be in the Settings charm
and changing its location will lead to an inconsistent and
unexpected experience for your users.

Summary
In this chapter, we were introduced to Live Connect and learned about its core
concepts and saw what we can do with these APIs, what settings are needed by
the app to start calling the APIs, and how to write the basic code to call the APIs.

We also covered how to register the app on the Store and communicate with the
Store from within Visual Studio.

Then we got to utilize the Live Connect APIs and sign in the user to the app.
Also, we learned how to get session info after the user signs consent.

In the next chapter we will learn about the app bar, how to create one for the app,
and how to add menu buttons to it.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Adding Menus and
Commands

In this chapter we will learn about the app bar and understand how it works and
where it is found on the app. Moreover, we will cover how to declare an app bar
and add controls to it.

Understanding the app bar
When you run a Windows Store app, all you see is a full screen app that allows you to
be immersed in the content of the app; however, then you ask yourself where all the
buttons and controls are. They are all contained and hidden in the app bar—hidden
till you need them, of course—to avoid distractions and make use of every pixel on
the screen for the content of the app.

The app bar can be found at the bottom of the screen and appears when triggered
by the user. This can be done with a touch gesture (by tapping or swiping upward
from the bottom edge or downward from the top edge), using the mouse (by right-
clicking), or using the keyboard (via the shortcut Windows + Z). The app bar typically
holds the controls that are relevant to the current screen. By default, the controls are
equally split between the left-hand and right-hand side of the screen. The left-hand
side contains the commands that are specific to the content that is currently being
shown in the app and the right-hand side holds the commands that are global to
the app and apply to all the pages. The app bar can also contain commands that
are specific to a single element in the app.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Adding Menus and Commands

[124]

Let's have a look at a sample app bar. The following screenshot shows the app bar
of the Microsoft Bing app that contains four commands, namely Copy Link, Copy,
Save As, and Set As Lock Screen:

The app bar's hiding mechanism allows users to focus and get immersed in the
content and minimizes distractions. It provides the user with consistent and easy
access to the commands when they need them, and they can easily see or hide
the app bar.

When we try to show the app bar using the mouse, touch, or keyboard, another bar
will appear simultaneously located at the top of the screen. This is the navigation
bar and though it may look similar, it is not an app bar. The navigation bar is used
to show controls that help us navigate between different sections of an application.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 9

[125]

The app bar, if it exists, should always be available to the user and thus adapt to
changes in the layout between snapped and portrait views. For example, if you can't
fit all the commands in a snapped view, you can try to group them into menus and
provide tooltips for the commands, even though Windows will automatically hide
the labels and adjust the padding accordingly.

It is strongly recommended that you do not change the size or
the padding of buttons that are applied by the default layout
provided by WinJS, since it is designed to fit 10 commands on
all supported screen sizes; more importantly, it is designed to
support touch gestures. Hence, making changes to the layout
may disrupt this behavior.

The app bar is made available by the WinJS library using the object WinJS.UI.AppBar.

It is very trivial to declare an app bar in the markup. We start by creating an app bar
from a simple div element by simply specifying a WinJS.UI.AppBar control in the
data-win-control attribute. The syntax will be as follows:

<div id="testAppBar" data-win-control="WinJS.UI.AppBar"> </div>

The preceding syntax will create an empty app bar that will be displayed when
triggered either by a mouse or an upward swipe.

The app bar is made to contain command buttons, so let's add a command button
inside the app bar. In order to create an app bar command button, we will use a
button element and specify its data-win-control attribute to be AppBarCommand,
as shown in the following code:

<div id="testAppBar" data-win-control="WinJS.UI.AppBar">
 <button data-win-control="WinJS.UI.AppBarCommand"></button>
</div>

The preceding syntax will show the app with an empty command button inside.
We can add life to this command button by specifying some options in the data-
win-options attribute. These options are as follows:

•	 type: This option indicates the type of command from the following
values – button, toggle, separator, and flyout.

•	 Id: This option specifies an ID for the command.
•	 label: This option specifies the text to be displayed on the app bar.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Adding Menus and Commands

[126]

•	 Icon: This option specifies an icon to be displayed for the command either
by choosing a value from the AppBarIcon list provided by Windows, such
as pin, unpin, accept, cancel, and delete, or by specifying the path to a
custom PNG image file.

•	 section: This option indicates the section to which the command belongs,
either selection or global. The selection section will place the command
to the left of the app bar, which is reserved for contextual or page-specific
commands, while the global section will place the command to the right,
which is reserved for global or app-level commands.

•	 tooltip: This option specifies an info tooltip (hint) to be displayed when
the user hovers over the command.

The following code shows what the syntax will look like after adding these options
for the command button that we declared in the previous example:

<button data-win-control="WinJS.UI.AppBarCommand"
data-win-options="{type:'button', id:'testCmd', label:'Test Command',
icon:'placeholder', section:'global', tooltip: 'Command Tooltip' }">
</button>

Run the app and you will see an app bar.as shown in the following screenshot:

As you can see in the preceding screenshot, the app bar contains a button that has
the placeholder icon, labeled as Test Command; when hovered over, it will display
the tooltip Command Tooltip.

Adding functionality to the commands
The app bar we just created doesn't really do anything yet, so let's add another
command and check the other types. But before that, we need a separator between
the two commands; it can be created using an hr element that the app bar contains
by default in addition to the command buttons.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 9

[127]

The hr element will also need to have the data-win-control="WinJS.
UI.AppBarCommand" attribute set on it. The syntax for creating a separator
will look like the following code:

<hr data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{type:'separator', section:'global'}" />

After the separator, we'll add a new button command but this time we will choose
the pin icon; the syntax will look as follows:

<div id="testAppBar" data-win-control="WinJS.UI.AppBar">
<button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{ type:'button', id:'pinCmd', label:'Pin to
 start', icon:'pin', section:'global', tooltip: 'Pin the app'}">
</button>
<hr data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{type:'separator', section:'global'}" />
<button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{type:'button', id:'testCmd', label:'Test
 Command', icon:'placeholder', section:'global', tooltip:
 'Command Tooltip' }">
</button>
</div>

Run the app now and you should see two command buttons, one with a pin icon and
the other with a placeholder icon, and a separator between these two that looks like
an hr element. The following is the screenshot of the resulting app bar when the user
hovers over the command labeled Pin to start:

These commands look nice on the app bar but still do nothing when clicked on, so let's
add some functionality to the Pin to start command button and start the app pin.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Adding Menus and Commands

[128]

To add some functionality to the command buttons, we need to retrieve them from
the app bar and add to it a click event handler. The following code gets the app bar
and sets it to a variable. Then, it gets the specific command in that app bar using its
Id attribute and attaches a function to its click event:

//get the appbar control
var appbar = document.getElementById("testAppBar").winControl;
//get the command and add an event handler to it
appbar.getCommandById("pinCmd").addEventListener("click", clickPin,
false);
//function to be called when the command is clicked
function clickPin() {
var dialog = new Windows.UI.Popups.MessageDialog("The pin command in
the bar has been clicked.");
dialog.showAsync();
}

Run the app now and click on the Pin to start command button; a pop-up message
dialog will appear on the screen.

The app bar is by default located at the bottom of the app and can be changed to
be at the top of the screen; however, it should contain navigational elements that
move the user to a different page. The top app bar, according to the Windows 8
UX guidelines, is a navigational bar. Getting back to the code, we can change the
location of the app bar from the bottom to the top by simply setting the value of
the placement property of the data-win-options attribute in the app bar
control, as shown in the following code:

<div id="testAppBar" data-win-control="WinJS.UI.AppBar"
 data-win-options="{placement:'top'}">

But again, the default and recommended behavior by the UX guidelines is to place
the app bar at the bottom, since the top bar is reserved for navigational commands.

In the previous examples, we have added the app bar to the main page, default.
html, but in fact the page we should choose to include our app bar in is not arbitrary
and depends on its scope, as follows:

•	 Add the app bar to the default.html page if it contains commands that
are global and should be available to all the pages

•	 Add the app bar to a specific page (a PageControl object) if it contains
commands that are specific to one page and will differ between a page
and another

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 9

[129]

Alternatively, we can define a default app bar in the main default.html file and
then do the required modifications on the app bar on the load event of that particular
page, which requires different commands from the default.

Summary
In this chapter, we saw what app bars are and where we can place the commands
and controls for the app. We also learned about the difference between an app
bar and a navigational bar. We saw what app bar commands are and the different
options they can hold. Then we saw how to create a simple app bar containing
commands and separators.

Finally, we saw how to add basic functionality to any command type on the app bar.

In the next chapter we will reach the final destination of a Windows Store app;
that is, submitting to the Store itself, and we will learn how to publish the app to
the Store from Visual Studio and handle the app configuration on the dashboard.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Packaging and Publishing
Windows Store is like a huge shopping mall and your app, once published to the Store,
will be like a small shop in that mall; the Windows Store Dashboard is where you will
set all the branding, advertising, and marketing material for the shop. Visual Studio is
your production environment and the Store is your destination, and everything else in
between is in the Windows Store Dashboard. In this chapter we will be introduced to
the Store and learn how to get an app through all the stages into publishing. Also, we
will see how we can interact with the Store from within Visual Studio.

Introducing the Windows Store
Developing a Windows Store app is not just about design, coding, and markup.
A very essential part of the process that leads to a successful app is done on the
Windows Store Dashboard. It is the place where you submit the app, pave its way
to the market, and monitor how it is doing there. Also, it is the place where you can
get all the information about your existing apps and where you can plan your next
app. We already had a sneak preview of the Dashboard in Chapter 8, Signing Users in,
when we were learning how to add authentication and the sign-in functionality. The
submission process is broken down into seven phases, and in Chapter 8, Signing Users
in, we completed the first step in the Release Summary page, which is reserving an
app name and registering the app with Windows Store. There are six more steps to
complete in order to submit the app for certification. If you haven't already opened
a Windows Store developer account, now is the time to do so because you will need
it to access your Dashboard. Before you sign up, make sure you have a credit card.
The Windows Store requires a credit card to open a developer account even if you
had a registration code that entitles you to a free registration.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Packaging and Publishing

[132]

Once signed in, locate your app listed on the home page under the Apps in progress
section and click on Edit. This will direct you to the Release Summary page and the
app will be titled AppName: Release 1. The release number will auto-increment each
time you submit a new release for the same app. The Release Summary page lists
the steps that will get your app ready for Windows Store certification. On this page,
you can enter all the info about your Windows Store app and upload its packages for
certification. At the moment you will notice that the two buttons at the bottom of the
page labeled as Review release info and Submit app for certification are disabled
and will remain so until all the previous steps have been marked Complete. The
submission progress can always be saved to be resumed later, so it is not necessarily
a one-time mission. We'll go over these steps one by one:

1.	 App name: This is the first step and it includes reserving a unique name
for the app.

2.	 Selling details: This step includes selecting the following:
°° The app price tier option sets the price of your app (for example,

free or 1.99 USD).
°° The free trial period option is the number of days the customer can

use the app before they start paying to use it. This option is enabled
only if the app price tier is not set to Free.

°° The Market where you would like the app to be listed in the
Windows Store. Bear in mind that if your app isn't free, your
developer account must have a valid tax profile for each
country/region you select.

°° The release date option specifies the earliest date when the app will
be listed in the Windows Store. The default option is to release as
soon as the app passes the certification.

°° The App category and subcategory option indicates where your app
be listed in the Store, which in turn lists the apps under Categories.

°° The Hardware requirements option will specify the minimum
requirements for the DirectX feature level and the system RAM.

°° The Accessibility option is a checkbox that when checked indicates
that the app has been tested to meet accessibility guidelines.

3.	 Services: In this step, you can add services to your app such as Windows
Azure Mobile Services and Live Services (just as we did in Chapter 8, Signing
Users in). You can also provide products and features that the customer can
buy from within the app called In-app offers.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 10

[133]

4.	 Age rating and rating certificates: In this step, you can set an age rating for
the app from the available Windows Store age ratings. Also, you can upload
country/region-specific rating certificates in case your app is a game.

5.	 Cryptography: In this step, you specify if your app calls, supports, and
contains or uses cryptography or encryption. The following are some of
the examples of how an app might apply cryptography or encryption:

°° Use of a digital signature such as authentication or integrity checking
°° Encryption of any data or files that your app uses or accesses
°° Key management, certificate management, or anything that interacts

with a public key infrastructure
°° Using a secure communication channel such as NTLM, Kerberos,

Secure Sockets Layer (SSL), or Transport Layer Security (TLS)
°° Encrypting passwords or other forms of information security
°° Copy protection or digital rights management (DRM)
°° Antivirus protection

6.	 Packages: In this step, you can upload your app to the Store by uploading
the .appxupload file that was created in Visual Studio during the package-
creation process. We will shortly see how to create an app package. The latest
upload will show on the Release Summary page in the packages box and
should be labeled as Validation Complete.

7.	 Description: In this step you can add a brief description (mandatory) on what
the app does for your customers. The description has a 10,000-character limit
and will be displayed in the details page of the app's listing in the Windows
Store. Besides description, this step contains the following features:

°° App features: This feature is optional. It allows you to list up to 20
of the app's key features.

°° Screenshots: This feature is mandatory and requires to provide at
least one .png file image; the first can be a graphic that represents
your app but all the other images must be screenshots with a caption
taken directly from the app.

°° Notes: This feature is optional. Enter any other info that you think
your customer needs to know; for example, changes in an update.

°° Recommended hardware: This feature is optional. List the hardware
configurations that the app will need to run.

°° Keywords: This feature is optional. Enter keywords related to the
app to help its listing appear in search results.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Packaging and Publishing

[134]

°° Copyright and trademark info: This feature is mandatory. Enter the
copyright and trademark info that will be displayed to customers in
the app's listing page.

°° Additional license terms: This feature is optional. Enter any changes
to the Standard App License Terms that the customers accept when
they acquire this app.

°° Promotional images: This feature is optional. Add images that the
editors use to feature apps in the Store.

°° Website: This feature is optional. Enter the URL of the web page that
describes the app, if any.

°° Support contact info: This feature is mandatory. Enter the support
contact e-mail address or URL of the web page where your customers
can reach out for help.

°° Privacy policy: This feature is optional. Enter the URL of the web
page that contains the privacy policy.

8.	 Notes to testers: This is the last step and it includes adding notes about this
specific release for those who will review your app from the Windows Store
team. The info will help the testers understand and use this app in order to
complete their testing quickly and certify the app for the Windows Store.

Each step will remain disabled until the preceding one is completed and the steps
that are in progress are labeled with the approximate time (in minutes) it will take
you to finish it. And whenever the work in a single step is done, it will be marked
Complete on the summary page as shown in the following screenshot:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 10

[135]

Submitting the app for certification
After all the steps are marked Complete, you can submit the app for certification.
Once you click on Submit for certification, you will receive an e-mail notification
that the Windows Store has received your app for certification. The dashboard
will submit the app and you will be directed to the Certification status page.
There, you can view the progress of the app during the certification process,
which includes the following steps:

•	 Pre-processing: This step will check if you have entered all the required
details that are needed to publish the app.

•	 Security tests: This step tests your app against viruses and malware.
•	 Technical compliance: This step involves the Windows App certification

Kit to check if the app complies with the technical policies. The same
assessment can be run locally using Visual Studio, which we will see
shortly, before you upload your package.

•	 Content compliance: This step is done by testers from the Store team
who will check if the contents available in the app comply with the
content policies set by Microsoft.

•	 Release: This step involves releasing the app; it shouldn't take much time
unless the publish date you've specified in Selling details is in the future,
in which case the app will remain in this stage until that date arrives.

•	 Signing and publishing: This is the final step in the certification process.
At this stage, the packages you submitted will be signed with a trusted
certificate that matches the technical details of your developer account,
thus guaranteeing for the potential customers and viewers that the app
is certified by the Windows Store.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Packaging and Publishing

[136]

The following screenshot shows the certification process on Windows Store Dashboard:

No need to wait on that page; you can click on the Go to dashboard button and
you will be redirected to the My apps page. In the box containing the app you just
submitted, you will notice that the Edit and Delete links are gone, and instead
there is only the Status link, which will take you to the Certification status page.
Additionally, a Notifications section will appear on this page and will list status
notifications about the app you just submitted, for example:

BookTestApp: Release 1 submitted for certification. 6/4/2013

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 10

[137]

When the certification process is completed, you will be notified via e-mail with the
result. Also, a notification will be added to the dashboard main page showing the
result of the certification, either failed or succeeded, with a link to the certification
report. In case the app fails, the certification reports will show you which part
needs revisiting. Moreover, there are some resources to help you identify and
fix the problems and errors that might arise during the certification process; these
resources can be found at the Windows Dev Center page for Windows Store apps
at the following location:

http://msdn.microsoft.com/en-us/library/windows/apps/jj657968.aspx

Also, you can always check your dashboard to check the status of your app
during certification.

After the certification process is completed successfully, the app package will be
published to the Store with all the relevant data that will be visible in your app
listing page. This page can be accessed by millions of Windows 8 users who will
in turn be able to find, install, and use your app.

Once the app has been published to the Store and it's up and running, you can
start collecting telemetry data on how it is doing in the Store; these metrics include
information on how many times the app has been launched, how long it has been
running, and if it is crashing or encountering a JavaScript exception. Once you enable
telemetry data collection, the Store will retrieve this info for your apps, analyze them,
and summarize them in very informative reports on your dashboard.

Now that we have covered almost everything you need to know about the process
of submitting your app to the Windows Store, let us see what is needed to be done
in Visual Studio.

The Store within Visual Studio
Windows Store can be accessed from within Visual Studio using the Store menu.
Not all the things that we did on the dashboard can be done here; a few very
important functionalities such as app package creation are provided by this menu.
The Store menu can be located under the Project item in the menu bar using Visual
Studio 2012 Ultimate, or if you are using Visual Studio 2012 Express, you can find
it directly in the menu bar, and it will appear only if you're working on a Windows
Store project or solution.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Packaging and Publishing

[138]

We will get to see the commands provided by the Store menu in detail and the
following is the screenshot that shows how the menu will look:

The command options in the Store menu are as follows:

•	 Open Developer Account...: This option will open a web page that directs
you to Windows Dev Center for Windows Store apps, where you can obtain
a developer account for the Store.

•	 Reserve App Name...: This option will direct you to your Windows Store
Dashboard and specifically to the Submit an app page, where you can start
with the first step, reserving an app name, as we saw earlier in Chapter 8,
Signing Users in.

•	 Acquire Developer License...: This option will open up a dialog window that
will prompt you to sign in with your Microsoft Account; after you sign in, it
will retrieve your developer license or renew it if you already have one.

•	 Edit App Manifest: This option will open a tab with Manifest Designer,
so you can edit the settings in the app's manifest file.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 10

[139]

•	 Associate App with the Store...: This option will open a wizard-like window
in Visual Studio, containing the steps needed to associate an app with the
Store. The first step will prompt you to sign in; afterwards, the wizard will
retrieve the apps registered with the Microsoft Account you used to sign
in. Select an app and the wizard will automatically download the following
values to the app's manifest file for the current project on the local computer:

°° Package's display name
°° Package's name
°° Publisher ID
°° Publisher's display name

•	 Capture Screenshot...: This option will build the current app project and
launch it in the simulator instead of the start screen. Once the simulator
opens, you can use the Copy screenshot button on the simulator sidebar.
This button will be used to take a screenshot of the running app that will
save this image as a .png file.

•	 Create App Package...: This option will open a window containing the
Create App Packages wizard that we will see shortly.

•	 Upload App Package...: This option will open a browser that directs you to
the Release Summary page in the Windows Store Dashboard, if your Store
account is all set and your app is registered. Otherwise, it will just take you
to the sign-in page. In the Release Summary page, you can select Packages
and from there upload your app package.

Creating an App Package
One of the most important utilities in the Store menu is the app package creation,
which will build and create a package for the app that we can upload to the Store at a
later stage. This package is consistent with all the app-specific and developer-specific
details that the Store requires. Moreover, the developers do not have to worry about
any of the intricacies of the whole package-creation process, which is abstracted for
us and available via a wizard-link window.

In the Create App Packages wizard, we can create an app package for the Windows
Store directly, or create the one to be used for testing or local distribution. This wizard
will prompt you to specify metadata for the app package.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Packaging and Publishing

[140]

The following screenshot shows the first two steps involved in this process:

In the first step, the wizard will ask you if you want to build packages to upload
to the Windows Store; choose Yes if you want to build a package for the Store or
choose No if you want a package for testing and local use. Taking the first scenario
in consideration, click on Sign In to proceed and complete the sign-in process using
your Microsoft Account.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 10

[141]

After a successful sign-in, the wizard will prompt you to select the app name (step
2 of the preceding screenshot) either by clicking on the apps listed in the wizard
or choosing the Reserve Name link that will direct you to the Windows Store
Dashboard to complete the process and reserve a new app name. The following
screenshot shows step 3 and step 4:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Packaging and Publishing

[142]

Step 3 contains the Select and Configure Packages section in which we will select
Output location that points to where the package files will be created. Also, in
this section we can enter a version number for this package or chose to make it
auto-increment each time we package the app. Additionally, we can select the
build configuration we want for the package from the Neutral, ARM, x64, and
x86 options and by default, the current active project platform will be selected
and a package will be produced for each configuration type selected.

The last option in this section is the Include public symbol files option. Selecting this
option will generate the public symbols files (.pdb) and add it to the package, which
will help the store later in analyzing your app and will be used to map crashes of
your app. Finally, click on Create and wait while the packaging is being processed.
Once completed, the Package Creation Completed section appears (step 4) and will
show Output location as a link that will direct you to the package files. Also, there
is a button to directly launch the Windows App Certification Kit. Windows App
Certification Kit will validate the app package against the Store requirements and
generate a report of the validation.

The following screenshot shows the window containing the Windows App
Certification Kit process:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 10

[143]

Alternatively, there is a second scenario for creating an app package but it is more
aimed at testing, which is identical to the process we just saw except that you have
to choose No in the first page on the wizard and there is no need to sign-in with the
Microsoft Account. This option will end the wizard when the package creation has
completed and display the link to the output folder but you will not be able to launch
the Windows App Certification Kit. The packages created with this option can only
be used on a computer that has a developer license installed. This scenario will be
used more often since the package for the Store should ideally be tested locally first.
After creating the app package for testing or local distribution, you can install it on
a local machine or device.

Let's install the package locally. Start the Create App Packages wizard; choose
No in the first step, complete the wizard, and find files of the app package just
created in the output folder that you specified for the package location. Name this
as PackageName_Test. This folder will contain an .appx file, a security certificate,
a Windows PowerShell script, and other files. The Windows PowerShell script
generated with the app package will be used to install the package for testing.
Navigate to the Output folder and install the app package. Locate and select the
script file named Add-AppDevPackage, and then right-click and choose Run with
PowerShell as shown in the following screenshot:

Run the script and it will perform the following steps:

1.	 It displays information about Execution Policy Change and prompts about
changing the execution policy. Enter Y to continue.

2.	 It checks if you have a developer license; in case there wasn't any script,
it will prompt you to get one.

3.	 It checks and verifies whether the app package and the required certificates
are present; if any item is missing, you will be notified to install them before
the developer package is installed.

4.	 It checks for and installs any dependency packages such as the WinJS library.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Packaging and Publishing

[144]

5.	 It displays the message Success: Your package was successfully installed.
6.	 Press Enter to continue and the window will close.

The aforementioned steps are shown in the following screenshot:

Once the script has completed successfully, you can look for your app on the Start
screen and start it.

Note that for users who are on a network and don't have permission to
access the directory where the Add-AppDevPackage PowerShell script
file is located, an error message might appear. This issue can be solved
by simply copying the contents of the output folder to the local machine
before running the script. Also, for any security-related issues, you might
want to consult the Windows Developer Center for solutions.

Summary
In this chapter, we saw the ins and outs of the Windows Store Dashboard and we
covered the steps of the app submission process leading to the publishing of the app
in the Store. We also learned about the Store menu in Visual Studio and the options
it provides to interact with the dashboard. Moreover, we learned how to create app
packages and how to deploy the app locally for testing.

In the next chapter we will have a sneak peak at the other side of the coin, developing
Windows 8 apps with XAML, and understand how similar it is to developing apps
with JavaScript, thereby showing you the power of developing apps for Windows 8
with multiple programming languages.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with XAML
Developing Windows Store apps is not exclusive to HTML5 and JavaScript. Microsoft
offers other choices with Extensible Application Markup Language (XAML) and
.NET, thus targeting a broader range of developers and expertise to develop for the
Store. Whatever your background is, whether web or Windows development, there
is a place for you—a starting point—because the road map to the Windows Store
will be the same regardless of your choice of programming language. In the previous
chapters, we have been learning how to develop apps and features with HTML5 and
JavaScript. But in this chapter, we will learn about other platforms and programming
languages available for developers. We will also cover the basics of creating an app
with XAML/C#.

Creating apps with different platforms
One of the paramount advances with Windows 8 is that you can develop apps
with more than one framework and programming language, targeting both web
and Windows developers. Moreover, developers can build on and leverage their
existing programming skills and knowledge to create Windows Store apps, and
will not necessarily have to acquire a completely new set of skills.

Web developers will be able to utilize their HTML5, CSS3, and JavaScript skills and
can even port existing websites easily into a Store app, while Windows developers,
familiar with Microsoft .NET Framework and Silverlight, can put into action their
XAML, C#, and Visual Basic skills. Additionally, Windows 8 targets developers who
are familiar with the C++ syntax and native libraries by providing the opportunity
to create Windows Store apps in Visual C++/XAML. Moreover, C++, you can create
Direct2D and Direct3D apps. In summary, we have the XAML markup with C#,
VB.NET, and C++, and to top it, Visual Studio 2012 provides project templates
and Intellisense support for all these programming languages.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with XAML

[146]

The same app can be built with either XAML or HTML5, and when deployed and run,
both versions will run in an identical manner. Everything that we have learned to do
in the previous chapters with JavaScript and HTML5 for Windows Store apps, from
functionalities to features, can be done with C#, VB.Net, and XAML. The choice of
the programming language to be used is based on personal preference, background
experience, and language familiarity more than anything else. Both choices will require
some level of learning. Web developers who are familiar with the HTML markup,
styling with CSS, and functionality with JavaScript, will need to learn about WinJS-
specific JavaScript functions and HTML data attributes and classes. Also, developers
who have experience with XAML will notice a great deal of familiarity with WPF and
Silverlight, but will have to learn about developing for the Windows Store design and
functionality. However, as I mentioned, the learning curve is minimal when you are
commencing Windows Store development with a familiar territory.

Introducing XAML apps
The roadmap for Windows Store apps using XAML is the same as that for Store apps
using JavaScript, beginning with tools and acquiring a developer license through the
design guidelines to planning the app and finishing with packaging and publishing
the app to the Store.

Let's create a basic Windows Store app using XAML and compare it with an app made
using HTML5. In Visual Studio, from the top menu, navigate to File | New Project. In
the New Project dialog window, choose your preferred programming language from
the left pane under Installed | Templates and then select Windows Store. Next, we
select one of the listed project templates for a Windows Store app and enter a name
for it in the Name: textbox. I will choose Visual C# for this demonstration; feel free
to go with Visual Basic or Visual C++. Finally, click on OK to create the project:
The following screenshot shows the entire process as discussed:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 11

[147]

The preceding screenshot shows the following Windows Store app templates provided
with XAML: Blank App (XAML), Grid App (XAML), and Split App (XAML).

•	 Blank App (XAML): This template provides an empty Windows Store
app that will compile and run, but contains no user interface controls
or data. When it runs an app based on this template, it will only show
a black screen that contains a placeholder text.

•	 Grid App (XAML): This template provides an app that enables users to
browse through categories and dive into the details of the content that
falls under each category. A few good examples for this template include
shopping apps, news apps, and photo or video apps. The Grid App (XAML)
template starts with a landing home page that will display a list of groups or
categories. A single group is a named set of items; for example, a group of
news articles named Sports News. When the user selects one group, the app
opens the group details page, which in turn displays a list of items that the
group contains on the right-hand side. Consequently, when the user selects
a single item on either the home page or the group details page, the app will
open a page that shows the item details.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with XAML

[148]

The following screenshot shows a sample home page of Grid App (XAML):

•	 Split App (XAML): This template provides an app that enables users to
browse through categories to find specific content similar to a Grid App
(XAML) template; however, with the Split App (XAML) template, users can
view a list of items and item details in the same page in a two-column split
view. This split view enables all users to switch among the items rapidly.
Examples for the usage of this template include news readers or an e-mail
app. This template starts with a landing home page that shows a list of
groups. When the user selects a group, the app will open a split-view page.
The following screenshot shows a sample split-view page:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 11

[149]

These three project templates are similar to the ones provided in a Windows
Store JavaScript project, but the latter provides two additional templates, the
Fixed Layout App and the Navigation App.

We'll start with the Blank App (XAML) template, which contains the minimal
project files required to run the app. The Blank App (XAML) template creates
an empty Windows Store app that contains no user interface, but will compile
and run. Once the blank app has been created, navigate to Solution Explorer
on the right-hand side of Visual Studio and expand the list of project files to
see the default files that are created with this template.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with XAML

[150]

The following screenshot shows the contents of Solution Explorer to the right and
the MainPage.xaml file, when opened in the XAML text editor, to the left:

The project we just created contains the following folders and files, which are
indispensable to all Windows Store apps using C# or Visual Basic:

•	 Properties: This folder contains the app assembly information.
•	 References: This folder contains the project references files and by

default, has the following two SDK references: .NET for Windows
Store apps and Windows.

•	 Assets: This folder contains the following images:
°° Large and small logo images of sizes 150 x 150 px and

30 x 30 px, respectively.
°° The SplashScreen image.
°° The StoreLogo image of size 50 x 50 px.

•	 Common: This folder contains the common shared resources in the app
such as the StandardStyles.xaml file, which provides a set of default
styles that gives the app its Windows 8 look and feel. In addition, this
folder will contain the files for the utility and helper classes.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 11

[151]

This template also includes the following .xaml page files:

•	 App.xaml: This is the main app file that is required to display the user
interface and is first loaded when the app runs. This page declares resources
that are shared across the app, such as styles, and provides the markup
for the content host. This page is similar to what the default.html page
represents in apps using JavaScript.

•	 App.xaml.cs: This is the code-behind file for App.xaml and contains the
code that handles the global app-specific behavior and events, such as app
launching and suspending. This file is similar to what the default.js file
represents in apps using JavaScript.

•	 MainPage.xaml: This is the default startup page of the app and contains
the minimal XAML markup and code to instantiate a page.

•	 MainPage.xaml.cs: This is the code-behind file corresponding to the
MainPage.xaml file.

Finally, there is the manifest file, Package.appxmanifest, which contains the app
description and settings identical to the one in JavaScript templates.

Microsoft recommends to not remove the files in the Common folder.
Also, it can neither be renamed nor modified because this results
in a build error. If there is a necessity to modify these files, you can
create a copy of the original file and then modify the copy instead.

Those who haven't heard of XAML before might be lost by now and wondering about
the syntax you just saw in the app and the MainPage.xaml files. XAML has a basic
syntax that is built on XML. When stripped down, an XAML document is an XML
document that shows a hierarchical relationship between objects, and to be considered
valid, it must also be a valid XML document. XAML files have a .xaml filename
extension, and each XAML file is associated with a code-behind file that contains the
code that will handle events, and manipulate objects and UI elements that were created
or declared in XAML. The code-behind file joined with the XAML page's partial class
makes a complete class. This is similar to the concept of ASP.NET web pages with
.aspx files containing the markup and code-behind in the .cs or .vb files. Also,
XAML files can be opened and edited in Microsoft Expression Blend. If you are new
to XAML, don't worry much about the syntax because Visual Studio helps you write
a valid markup by providing autocompletion hints and suggestion lists, and you will
learn the syntax along the way.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with XAML

[152]

Using XAML markup, we can create UI elements just like we do using HTML but
with a different syntax. Let's add the following UI elements inside the Grid element
in the MainPage.xaml file with the following syntax:

<TextBlock x:Name="pageTitle" Text="Test XAML App" ></TextBlock>
<TextBox Text="Input text here..." />
<CheckBox Content="Yes"/>

The preceding code listing shows the following properties: x:Name, which specifies
the name assigned to the TextBlock element; Text, which specifies the data as text
that will be filled in this element; and Content, which is similar to Text but specifies
the data as text that will show next to a CheckBox element.

The first line in the code listing declares a basic TextBlock element, which is similar
to a label element in HTML. We give this element a name and enter a value for its
Text property. The second element is Textbox with a Text value, and the third one is
a Checkbox element with the Content value. You can either write the syntax manually
or choose a control from those listed in the Toolbox pane and drag it directly to the
XAML text editor or the design surface, which are both visible in a split view.

In the designer window, you can manipulate these UI controls and arrange their
positioning on the window as shown in the following screenshot:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 11

[153]

You will notice that manipulating the controls in the Design pane reflects on the
syntax in the XAML pane below it, as new properties are being set for the elements
and existing ones are being changed. If you run the app now, you will see a black
screen containing the three elements we just added to the MainPage.xaml file.

The MainPage.xaml file contains the minimum markup and code needed to run
the page, but lacks all the additional code and classes that implement important
features in a Windows Store app, such as adapting to changes in view and handling
different states of the app. Fortunately, the other page templates provided by Visual
Studio, such as the Basic Page template, include the code and helper classes that
help you implement these features. For this purpose, we typically replace that empty
MainPage template with one of the other page templates while working with a Blank
App (XAML) project. In order to replace the MainPage.xaml file, right-click on it in
Solution Explorer and click on Delete. Then, right-click on the project root node and
click on Add New Item, which will open up a dialog window. From there, select
the Windows Store template type under Visual C# (or Visual Basic if you chose a
different template at the start of the example). Next, select Basic Page and give it the
name MainPage.xaml, otherwise the project will not build correctly. The following
screenshot illustrates the procedure:

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with XAML

[154]

Then, click on Add. If this is the first time you have added a new page different from
the Blank Page template to the Blank App (XAML) template, a message dialog will
be displayed with the warning, This addition depends on files that are missing
from your project. Click on Yes to add the missing files automatically. The XAML
and code-behind files for this page are added to the project, and if you expand
the Common folder, you will notice that the folder that first contained a single file,
StandardStyles.xaml, is now populated with code files that contain several helper
and utility classes. The newly added page will not show up in the designer until you
build the project/solution, so it compiles the helper classes the page depends on.
Let's see how the app looks like after this change; press F5 to build and run the app
in debugging mode.

Once it's run, the app will appear as a black screen containing the title My Application,
as shown in the following screenshot:

The important thing to note here is that this page is consistent with the design
guidelines for Windows 8 by default, without us having to add any styling or
markup. As you can see, the title appears to be of the same font size and is
positioned with the exact margins specified in the Windows 8 UX Guidelines
for Windows Store apps page (http://www.microsoft.com/en-in/download/
details.aspx?id=30704).

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 11

[155]

Adding a title, theme color, and content
Let's modify this minimal app by adding a title and changing its theme color. Then,
we'll add a simple text and write some code to handle a basic button-click event.

1.	 To change the title of this app, perform the following steps:
1.	 Open the MainPage.xaml file.
2.	 In the XAML designer pane, select the title My Application and

either right-click on it and select Edit Text or change the value of the
Text property found in the Properties window under Common. If it is
not shown by default, the Property window should be located on the
left-hand side of Visual Studio below the Solution Explorer panel.

2.	 To change the theme color of this app, perform the following steps. Similar to
what we had done in the app using JavaScript, we can switch between dark
and light themes here as well. In the app using JavaScript, there were two
CSS files, ui-dark.css and ui-light.css, referenced in the default.html
page. In apps using XAML, switching between the two themes is done in the
App.xaml file as follows:

1.	 Open the App.xaml file.
2.	 Go to the <Application> tag and add the RequestedTheme property

before the closing of the tag.
3.	 Click within the quotes of the tag, and Visual Studio's Intellisense

will prompt you with two property values: Light and Dark. Choose
Light and the <Application> tag will look as follows:
<Application
x:Class="App1.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:App1"
 RequestedTheme="Light">

4.	 Run the app to see the difference.

3.	 Now to add some UI content, open the MainPage.xaml file and locate the
root Grid element and the <VisualStateManager.VisualStateGroups>
tag inside it. Add the following XAML code snippet just before this tag:
<StackPanel Grid.Row="1" Margin="120,30,0,0">
 <TextBlock Text="Is this your first XAML App?"/>

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with XAML

[156]

 <StackPanel Orientation="Horizontal" Margin="0,20,0,20">
 <TextBox x:Name="answerInput" Width="360"
 HorizontalAlignment="Left"/>
 <Button Content="Post My Answer"/>
 </StackPanel>
 <TextBlock x:Name="myAnswer"/>
</StackPanel>

The preceding XAML code declares a StackPanel control that holds
UI controls inside it (think of it as a div element). Inside this, we add
a TextBlock element and assign its Text property a value, and then
we nest a StackPanel control inside the parent StackPanel (div inside
a div element). This StackPanel element will hold two controls: a
TextBox element to enter the input values that we assign for its width
and HorizontalAlignment properties, and a Button control to which
we assign a value for its Content property. Finally, add another empty
TextBlock element outside the inner StackPanel element.
Run the app and it will look like the following screenshot:

4.	 Lastly, let's add some functionality with an event handler for the button
we declared in the markup, as enlisted in the following steps:

1.	 Click on the Post My Answer button in either the XAML designer
or the text editor, and it will show in the Properties window.

2.	 In the Properties window, locate and click on the Events button
on the top-left area.

3.	 Locate the Click event at the top of the list and double-click or
press Enter in the textbox provided.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Chapter 11

[157]

This will create the event handler method. Display it in the code editor of the
file MainPage.xaml.cs.
The following screenshot shows the process:

The autogenerated event handler comes up with the name Button_Click
(if the button had a value for its name property, the event handler would have
looked something like ButtonName_Click). The method will look as follows:
private void Button_Click(object sender, RoutedEventArgs e)
{
}

Let's add simple code that gets the text entered in the input textbox and
displays it in the empty TextBlock named myAnswer. The code will look
as follows:
private void Button_Click(object sender, RoutedEventArgs e)
{
 myAnswer.Text = answerInput.Text;
}

If we go back to the XAML editor, we'll see that the Click event handler was
added to the Button element like this:
<Button Content="Post My Answer" Click="Button_Click"/>

Run the app now, enter some text in the textbox, and test the button. Once
clicked, it will output whatever is inside the textbox to the screen.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Developing Apps with XAML

[158]

There is much more to XAML than this simple demo, and the previous example
merely shows us how we can start with a very basic app and build up content and
functionality. XAML is not that hard once we become familiar with it; as with any
other programming language, we will need practice. However, the choice between
XAML and HTML5 is completely yours.

One of the advantages of developing Windows Store apps with XAML is the
ability to migrate Windows Phone 7 apps to Windows 8 using the guide provided
by Microsoft to help you make the conversion. Likewise, Microsoft provides a guide
to help you port an existing Silverlight or WPF/XAML code to a Windows Store app
using XAML. Both these guides are available on the Windows Phone Dev Center page
(http://developer.windowsphone.com/en-us).

Summary
In this chapter, we have learned about different choices offered by Windows 8 for
developers. Additionally, we were introduced to the XAML language and syntax
in Windows Store apps.

We also covered how to start developing Windows Store apps using XAML and
how it differs from developing using JavaScript, which gave us a heads-up on
what to expect when we want to develop with either languages.

Finally, we created a minimal app and added to it some basic UI content and
functionality using the XAML markup.

In this book, we introduced new features in HTML5 and CSS3 and then learned
how these features are being implemented in a Windows Store app. We also covered
the JavaScript controls' functionalities, which are specific to the Windows Store app.
After this, we learned how to create a basic JavaScript app and how to quick-start
developing Windows Store apps with JavaScript. Further, we got to learn about some
of the important features of the apps and how to implement these features. We started
by retrieving data and displaying it using WinJS controls. Then, we got introduced to
the view states of the app and how to make the app respond to changes in these view
states. Afterward, we covered the tiles in Windows 8 and learned how to add live
tiles and send notifications to the app. Also, we learned how to integrate the app with
Windows Live services to enable authentication and sign-in for users using their e-mail
accounts. We also learned about the app bar in a Windows Store app and how to add
buttons to it. Finally, we got introduced to the Windows Store and learned all about
packaging and publishing the app to the store.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Index
Symbols
::after 30
::before 30
::first-letter 30
::first-line 30
::selection 30
<address> tag 8
<Application> tag 155
.appxupload file 133
<article> element 8
<article> tag 8
<aside> tag 8
.aspx file 151
<audio> element 10

autoplay attribute 11
controls attribute 11
loop attribute 11
mediagroup attribute 11
muted attribute 11
preload attribute 11

<audio> tag 10
<body> element 8, 24
.css file 64
<div> element 20, 24, 28
<footer> tag 8
<header> tag 8
<identity> element 114
<input> element 25
<input> tag 15, 16
<input> types

color attribute 16
date attribute 16
datetime attribute 16
datetime-local attribute 16

email attribute 16
max attribute 16
month attribute 16
number attribute 16
range attribute 16
search attribute 16
tel attribute 16
time attribute 16
url attribute 16
value attribute 16
week attribute 16

@keyframe 37
@media 39
-ms-flex-align property 36
-ms-flex-direction property 34-36
-ms-flex-pack property 36
-ms-flex-wrap property 36
-ms-grid-column-align property 33
-ms-grid-column property 33
-ms-grid-columns property 32, 33
-ms-grid-row-align property 33
-ms-grid-row property 33
-ms-grid-rows property 33
-ms-inline-grid property 32
<nav> tag 8
<p> element 24-30
.png file 139
<p> tag 11
<script> element 116
<section> tag 8
<source> element 11, 12
 element 26
<video> element

about 10-15
poster attribute 13

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

[160]

<video> tag 10-12
.xaml filename 151

A
accept attribute 20
accessibility option 132
addEventListener method 15, 66
Adjacent Sibling selector 28
app

creating, with different platforms 145, 146
data, binding to 73
Live Services, configuring for 113-115
submitting, for certification 135-137
users, signing in 115-120
view state 86-89

app bar 123-126
AppBarCommand 125
AppBar control 49
app category option 132
app functionality

adding, to commands 126-128
Application class 66
AppManifest.xml file 114
app name 132
app.onactivated event handler 65
app.oncheckpoint event handler 65
app package

creating 139-144
app price tier option 132
app subcategory option 132
app variable 66
App.xaml.cs file 151
App.xaml file 151, 155
arraybuffer value 47
asterisk (*) symbol 24
asynchronous programming

with promise objects 41-44
attribute name 20
attributes

validating 17-19
attribute selector 25, 26
attribute value 20
auth.login event 118
auto keyword 33
autoplay attribute 11-13
auto value 11

B
badgeColor field 75
badges 99-104
Binary Large Object. See blob
bindingList object 78, 96
bindingList variable 81
bindingSource object 74
Blank App 57, 62
Blank App (XAML) 147, 154
blob 47
browse button 16
Button control 156
button element 74
Button element 157

C
callback function

about 42
mechanism 42

Cascading Style Sheet. See CSS
certification

app, submitting for 135-137
process 135, 136

certification process
content compliance 135
pre-processing 135
release 135
security tests 135
signing and publishing 135

Checkbox element 152
class property 25
class selector 24, 25
click event 46, 156
click event handler 128
clickMe() function 42
color attribute 16
combinator selector 27
command options

Acquire Developer License option 138
Associate App with the Store option 139
Create App Package option 139
Edit App Manifest option 138
in Store menu 138
Open Developer Account option 138
Reserve App Name option 138

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

[161]

Upload App Package option 139
commands

app functionality, adding to 126-128
compareGroups 96
container element 92
Content property 156
controls 49
controls attribute 11, 14
copyright and trademark info feature 134
Copy screenshot button 139
createdFiltered method 96
createFiltered function 82
createFiltered method 81, 82
createGrouped method 96
createSorted function 81
createSorted method 81, 96
cryptography 133
CSS 23
CSS3

advantages 38
animations 37

CSS3 selectors
attribute selector 25, 26
combinator selector 27
pseudo-class selector 29
pseudo-element selector 29, 30

CSS3 transforms 38
CSS Media Queries 39
CSS powered animations

CSS3 animations 37
CSS3 transforms 38

CSS selectors
about 23
asterisk (*) symbol selector 24
class selector 24, 25
HTML element selector 24
ID selector 24

CSS transforms 36
customRequestInitializer option 48

D
Dashboard 112
data

binding 77
binding, to app 73
displaying 77-79

filtering 81-83
getting 73-76
sorting 81-83

data attributes
assigning 20, 21
attribute name 20
attribute value 20

dataContext object 74
data option 48
DataReader class 77
DataSample.itemList.dataSource

namespace 69
data-win-bind attribute 70, 74, 80
data-win-control attribute 50, 79, 125
data-win-control property 67
data-win-options attribute

about 51, 69, 80, 92, 125, 128
icon option 126
Id option 125
label option 125
section option 126
tooltip option 126
type option 125

date attribute 16
DatePicker control 49
datetime attribute 16
datetime-local attribute 16
default.css 63
default.html 63
default.html page 78
default.js file 50, 63, 65
Descendant selector 27
description, app

about 133
copyright and trademark info feature 134
features 133
hardware feature 133
image feature 134
keyword feature 133
license term feature 134
note feature 133
privacy policy feature 134
screenshots features 133
support contact info feature 134
website feature 134

design assets 54
developer license

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

[162]

getting 55, 56
digital rights management (DRM) 133
Direct Descendant selector 28
DisplayName field 113
display property 34
div element 48, 79, 125, 156
document.getElementById function 45
document object 45
document value 47
DOM

querying, with WinJS Utilities 44-46
done() method 44, 47, 76, 78

E
element object 45
email attribute 16
error function 44
Events button 156
Extensible Application Markup Language.

See XAML

F
fileContents variable 76
fileIO class 76
File Open Picker Contract 59
filled view 88, 89
FilteredListProjection object 81
Fixed Layout App 149 58
Flexbox layout

about 34
fluid layouts, creating 31

FlipView control 49, 73, 77
fluid layouts

creating, with Flexbox layout 30
creating, with Grid layout 30

Flyout control 49
FormData object 49
form elements

<input> tag 15, 16
about 15
validation 17-19

formnovalidate attribute 20
fraction units (fr) 32
free trial period option 132
from_user_name field 81

Full screen landscape view 86
Full screen portrait 87

G
General Sibling selector 29
getAttribute method 20
getGroupData 96
getGroupKey 96
global section 126
Go to dashboard button 136
Grid App 57
Grid App (XAML) 147, 148
Grid element 152, 155
Grid layout

about 31-33
fluid layouts, creating 30

Grid layout, properties
-ms-grid-column-align property 33
-ms-grid-column property 33
-ms-grid-column-span property 33
-ms-grid-columns property 33
-ms-grid-row-align property 33
-ms-grid-row property 33
-ms-grid-row-span property 33
-ms-grid-rows property 33

groupedItemsList.dataSource 97

H
Hands-on labs

for Windows 8, 54
hardware feature 133
hardware requirements option 132
headers option 48
height attribute 13
href attribute 26
hr element 126
HTML5

about 7
data attributes 20
form elements 15-19
media elements 10-14
semantic elements 8

HTML5 Media element API 10
HTML element selector 24
hyphen selector 26

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

[163]

I
icon option 126
id() 45
Id attribute 128
Id option 125
ID selector 24
image feature 134
images 63
Include public symbol files option 142
init method 119
input element 51, 66, 75
input type element 74
itemDataSource attribute 78, 82
itemDataSource property 97
itemTemplate property 71
IZoomableView interface 95

J
JavaScript

about 42
used, for media elements 14, 15

JavaScript item templates
about 59-61
File Open Picker Contract 59
Page Control 59
Search Contract 59
Share Target Contract 60

JavaScript Object Notation. See JSON
JSON 110
jsonData object 80
JSON.parse(jsonString) 76
json value 47

K
keyword feature 133
keywords

auto keyword 33
max-content keyword 33
min-content 33
minmax(a,b) keyword 33

L
label element 152
label option 125

lang attribute 26
Larger option 101
license term feature 134
ListDataSource class 73
listen() method 46
listTemplate element 80
ListView control

about 49, 67-73, 77-82, 97
advantages 77

ListView element 77, 78
ListView object 78
Live Connect

about 109-113
JSON 110
OAuth 2.0 110
prerequisites 111
REST 110

livesdk 116
Live Services

configuring, for app 113-115
live tiles

working with 104
Local method 104
log function 119
logical expression

@media 39
MediaRule 39
media type 39
TargetMediaProperty 39

login function 120
login method 119
loop attribute 11, 25

M
MainPage template 153
MainPage.xaml.cs file 151, 157
MainPage.xaml file 150-155
market option 132
max attribute 16, 19
max-content keyword 33
maxlength attribute 19
maxRating attribute 51
media elements

<audio> tag 10
<video> tag 10
about 10

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

[164]

JavaScript, using 14, 15
mediagroup attribute 11
media queries 39
MediaRule 39
media type 39
Menu control 49
metadata value 11
min attribute 19
min-content keyword 33
minmax(a,b) keyword 33
minRating attribute 51
month attribute 16
MSDN website

URL 53
ms-stream value 47
multiple attribute 16
muted attribute 11
myVideo element 14

N
name property 75, 157
nav element 24
Navigation App 58, 149
none value 11
note feature 133
notifications

about 99-104
sending 104-107

notifications delivery methods
Local method 104
Periodic method 105
Push method 105
Scheduled method 104

number attribute 16

O
OAuth 110
OAuth 2.0 110
objects

asynchronous programming 41-44
onactivated event 66
onactivated handler 66
Open Authentication. See OAuth

orientation preference
values 90

P
package.appxmanifest 63
Package.appxmanifest file 151
packages 133
Page Control 59
PageControl object 128
password option 48
pattern attribute 19
pause() method 14
People app 103, 104
Periodic method 105
person object 74, 75
Pin to start command button 127, 128
Pin to Start option 103
placement property 128
play() method 14
Post My Answer button 156
poster attribute 13
preceding selectors

Adjacent Sibling selector 28
Descendant selector 27
Direct Descendant selector 28
General Sibling selector 29

preload attribute
about 11
auto value 11
metadata value 11
none value 11

privacy policy feature 134
progress element 17
Promise 42
Promise object 44, 47
Property window 155
pseudo-class selector 29
pseudo-elements

::after 30
::before 30
::first-letter 30
::first-line 30
::selection 30

pseudo-element selector 29, 30

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

[165]

Push method 105

Q
query() 45
QueryCollection

addClass method 46
children method 46
clearStyle method 46
getAttribute method 46
hasClass method 46
query(query) method 46
removeClass method 46
removeEventListener method 46
setAttribute method 46
setStyle method 46
toggleClass method 46

QueryCollection object 45
querySelectorAll() function 45
querySelector() function 45

R
range attribute 16
Rating control 49
readTextAsync(file) function 76
readTextAsync(file) method 76
release date option 132
render method 79
Representational State Transfer. See REST
RequestedTheme property 155
required attribute 17-19, 25
responseType option

about 47
arraybuffer value 47
blob value 47
document value 47
json value 47
ms-stream value 47
text value 47

REST 110

S
Sample App Pack 54
Scheduled method 104

screenshot feature 133
search attribute 16
Search Contract 59
section option

about 126
global section 126
selection section 126

Secure Sockets Layer (SSL) 133
selection section 126
selector 23
selling details

accessibility option 132
app category option 132
app price tier option 132
app subcategory option 132
free trial period option 132
hardware requirements option 132
market option 132
release date option 132

semantic elements
<address> tag 8
<article> tag 8
<aside> tag 8
<footer> tag 8
<header> tag 8
<nav> tag 8
<section> tag 8
about 8

semantic zoom 93-96
SemanticZoom control 49, 95
services 132
setAttribute method 20
setNameBtn button 75
Share Target Contract 60
Sign in button 117, 122
Single Sign-on (SSO) 54
snapped and fill layouts 59
snapped view 88
Software Development Kit (SDK) 109
sortedList method 82
SortedListProjection object 81
span element 74
Split App 57
Split App (XAML) 148
src attribute 11
StackPanel element 156

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

[166]

StandardStyles.xaml file 150, 154
Start screen 99, 100, 103
Status link 136
step attribute 19
StorageDataSource object 73
storageFile 76
Store app 101
style.background value 75
Submit an app link 112
submit button 20
substring selector 26

T
TargetMediaProperty 39
tel attribute 16
templateContent variable 106
test app 103
TestApp_TemporaryKey.pfx

(AppName_TemporaryKey.pfx) 63
testVideo variable 14
TextBlock element 152, 156
Text property 152, 155
text tag 107
text value 47
then() 78
then() function 44, 107, 120
then() method 44, 47, 76, 120
tiles 99-104
time attribute 16
TimePicker control 49
timeupdate event 14
title attribute 25
Toast capable setting 105
toastNotifier variable 107
ToastTemplateType 106
ToggleSwitch control 50
Toolbox pane 152
tools 53
Tooltip control 50
tooltip option 126
transform property 38
Transport Layer Security (TLS) 133
type attribute 12, 15
type option 48, 125
type parameter 15

U
url attribute 16
url option 48
url string 48
user information

obtaining 120-122
user option 48
users

signing in, to app 115-120

V
validation attributes

pattern attribute 17-19
required attribute 17-19

value attribute 16
ViewBox control 50
ViewManagement.ApplicationView.value

property 92
view state

about 86
Filled view 88
Full screen landscape view 86
Full screen portrait 87
handling 90-92
Snapped view 88

Visual Studio
using 57-59
Windows Store, accessing within 137-139

W
website feature 134
week attribute 16
whitespace selector 26
width attribute 13
Windows 8

developer license, getting 55, 56
installing, options 53

Windows 8 Simulator 61
Windows Dev Center 54
Windows Library for JavaScript. See WinJS

Library
Windows Library for JavaScript 1.0 63
Windows Phone Dev Center

URL 158

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

[167]

Windows.Storage API file 76
Windows Store

about 131-134
accessing, within Visual Studio 137-139
age rating 133
app name 132
certificates rating 133
cryptography 133
description 133
notes, adding 134
packages 133
selling details 132
services 132

Windows Store apps
about 53, 54
URL 137

Windows Store Dashboard
URL 111

Windows.UI.Notifications namespace 106
WinJS 106
WinJS.Binding 73
WinJS.Binding.as 74
WinJS.Binding.List method 69
WinJS.Binding.List object 73, 77
WinJS.Binding.optimizeBindingReferences

property 73
WinJS.Binding.processAll() method 74
WinJS.Binding.Template 70
WinJS control 51, 73, 79, 81
WinJS Library 41, 81, 125, 143
WinJS.Namespace.define function 68
WinJS.Promise object 42
WinJS.UI.AppBarCommand attribute 127
WinJS.UI.AppBar control 125
WinJS.UI.AppBar object 125
WinJS.UI controls 78

AppBar control 49
DatePicker control 49
FlipView control 49
Flyout control 49
ListView control 49
Menu control 49
Rating control 49
SemanticZoom control 49
TimePicker control 49
ToggleSwitch control 50

Tooltip control 50
ViewBox control 50

WinJS.UI namespace 49
WinJS.UI.processAll() function 50, 51, 66,

67, 78
WinJS.UI.processAll() method 107
WinJS Utilities

DOM, querying with 44-46
WinJS.Utilities namespace 41, 45, 46
WinJS.Utilities object 45
WinJS.XHR 47, 48
WinJS.xhr function 47, 76
win-listview class 69
WL.api function 120
WL.getSession() method 118
WL.init method 118, 119
wl.js file 116
WL.login function 119
WL.login method 118
World Wide Web Consortium (W3C) 34

X
XAML 54, 145
XAML apps

about 146-154
Blank App (XAML) 147
content, adding 155-158
Grid App (XAML) 147
Split App (XAML) 148
theme color, adding 155-158
title, adding 155-158

XAML pane 153
xhr function 47
xhr object

about 48
customRequestInitializer option 48
data option 48
headers option 48
password option 48
type option 48
url option 48
user option 48

XMLHttpRequest object 49
XMLHttpRequest.send method 48

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Thank you for buying
Developing Windows Store Apps with HTML5

and JavaScript

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

HTML5 Enterprise Application
Development
ISBN: 978-1-849685-68-9 Paperback: 332 pages

A step-by-step practical introduction to HTML5
through the building of a real-world application,
including common development practices

1.	 Learn the most useful HTML5 features by
developing a real-world application

2.	 Detailed solutions to most common problems
presented in an enterprise application
development

3.	 Discover the most up-to-date development tips,
tendencies, and trending libraries and tools

HTML5 Web Application
Development By Example
Beginner's Guide
ISBN: 978-1-849695-94-7 Paperback: 276 pages

Learn how to build rich, interactive web applications
from the ground up using HMTL5, CSS3, and jQuery

1.	 Packed with example applications that show
you how to create rich, interactive applications
and games.

2.	 Shows you how to use the most popular and
widely supported features of HTML5

3.	 Full of tips and tricks for writing more efficient
and robust code while avoiding some of the
pitfalls inherent to JavaScript

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

Designing Next Generation Web
Projects with CSS3
ISBN: 978-1-849693-26-4 Paperback: 288 pages

A practical guide to the usage of CSS3 – a journey
through properties, tools, and techniques to better
understand CSS3

1.	 CSS3 properties and techniques have been
applied to complete web projects

2.	 Explains tools to deal with CSS increasing
in complexity, such as experimental vendor
prefixes

3.	 Fast and concise style focused primarily on
practical aspects like implementation techniques
and fallback strategies

Windows Phone 8 Game
Development
ISBN: 978-1-849696-80-7 Paperback: 270 pages

A practical guide to creating games for the Windows
Phone 8 platform using 2D and 3D graphics, sensors,
geolocation, augmented reality, social networks, and
web services

1.	 Create a 3D game for the Windows Phone 8
platform

2.	 Combine native and managed development
approaches

3.	 Discover how to use a range of inputs,
including sensors

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: HTML5 Structure
	Understanding semantic elements
	Introducing built-in media elements
	Advanced media with JavaScript

	Introducing feature-rich form elements
	An enriched <input> tag
	Easy validation

	Assigning custom data attributes
	Summary

	Chapter 2: Styling with CSS3
	The power of CSS3 selectors
	Attribute selectors
	Combinator selectors
	Pseudo-class selectors
	Pseudo-element selectors

	Creating fluid layouts with Grid and Flexbox
	The Grid layout
	The Flexbox layout

	CSS-powered animations
	CSS3 animations
	CSS3 transforms

	Introducing media queries
	Summary

	Chapter 3: JavaScript for Windows Apps
	Asynchronous programming with Promise objects
	Querying the DOM with WinJS.Utilities
	Understanding WinJS.xhr
	Introducing a new set of controls
	Summary

	Chapter 4: Developing Apps with JavaScript
	Introducing the tools
	Getting a free developer license

	Using Visual Studio and its templates
	Project item templates

	Starting with Blank App
	Understanding the ListView control
	Summary

	Chapter 5: Binding Data to the App
	Getting the data
	Displaying the data
	Sorting and filtering the data
	Summary

	Chapter 6: Making the App Responsive
	Introducing app view states
	Handling a view state
	Understanding semantic zoom
	Summary

	Chapter 7: Making the App Live with Tiles and Notifications
	Introducing tiles, badges, and notifications
	Working with live tiles

	Sending notifications
	Summary

	Chapter 8: Signing Users in
	Introducing Live Connect
	Signing in users to the app
	Getting user info

	Summary

	Chapter 9: Adding Menus and Commands
	Understanding the app bar
	Adding functionality to the commands

	Summary

	Chapter 10: Packaging and Publishing
	Introducing the Windows Store
	Submitting the app for certification

	The Store within Visual Studio
	Creating an App Package

	Summary

	Chapter 11: Developing Apps with XAML
	Creating apps with different platforms
	Introducing XAML apps
	Adding a title, theme color, and content

	Summary

	Index

